Playground: A Safe Building Operating System

Xiaohan Fu*, Yihao Liuf, Jason Koh¥, Dezhi Hong®, Rajesh Gupta*, and Gabe Fierro¥
*University of California San Diego, USA, {xhfu, rgupta}@ucsd.edu
TNanyang Technology University, Singapore, yihao002@e.ntu.edu.sg
IMapped, USA, jason@mapped.com
§ Amazon, USA, hondezhi@amazon.com
YColorado School of Mines, USA, gtfierro@mines.edu

Abstract—Building operating systems are an emerg-
ing class of system software that provides services to
applications running on commercial buildings. The cur-
rent state-of-the-art requires applications to be trusted
and carefully monitored due to a lack of authorization,
access control, and execution isolation mechanisms in
existing building operating systems. Proposed solutions
do not adequately handle the complexity and scale of
modern buildings, therefore impeding the adoption
of applications that can enhance energy efficiency,
occupant health, comfort, and productivity.

This work explores the execution of untrusted user-
facing applications in smart building environments
with a focus on maintenance and management labor
costs, ensuring the practicality and long-term sus-
tainability of adopting such applications. We develop
an operating system abstraction for smart buildings,
PlayGround, that incorporates a structured semantic
representation of the building to inform the safe,
multi-tenant execution of untrusted applications. We
use the semantic representation to implement (a)
a novel graph-based capability mechanism for fine-
grained and expressive access control management, and
(b) a resource isolation mechanism with preemptive
interventions and passive telemetry-based live resource
monitoring. We demonstrate PlayGround on several real
applications in a real building.

Index Terms—DBrick, building, isolation, capability

I. INTRODUCTION

Buildings are at the center of nearly all human activities.
An average American spends 90% of time in a building [1].
A 2022 survey found that buildings account for 40% of the
total energy consumption in the U.S and 20% of global
energy consumption, with the latter number rising 2%
per year [2]. Consequently, there is a need to reduce
building energy consumption while also maintaining
occupant comfort and increasing productivity. The rise
of the Internet of Things and the subsequent emergence
of buildings as connected digital assets offers new
opportunities to achieve these goals through the adoption
of intelligent, data-driven “applications.”

Applications need to run somewhere. Existing building
management systems (BMS) implement supervisory
control and basic alarming, but their proprietary nature
makes them difficult to program. Over a decade of work

This work is partly supported by the National Science Foundation
under Award Number 1947050.

on operating systems for buildings [3]-[6], application
runtimes [7]-]9], and applications [10]-[13] has established
the need for programmatic abstractions over complex
building subsystems and the I/O functionality provided
by the underlying BMS. Prior work has also proven
the difficulty of doing this effectively across a vastly
heterogeneous building stock. Every building is a “one-
off”: an ad-hoc collection of equipment and software from
multiple vendors, most of which are non-interoperable.
The resulting need for standardized representations of
buildings has inspired academic, federal, and commercial
investment in semantic metadata ontologies and schemas
like Brick [14] and others [15]-[18]. These semantic digital
representations increase the programmability of buildings
by allowing applications to dynamically discover available
resources and subsystems.

Despite technological and standardization victories, the
pace of innovation and the adoption rate of “smart build-
ing applications” remains low for two safety reasons.
First, building managers (the custodians of digital access
to buildings) are naturally protective of the safety- and
comfort-critical elements of buildings and are reluctant
to permit unvetted and possibly buggy applications to
influence the building’s operation. Second, the inability
of modern buildings to properly restrict an application’s
permissions [5], [19] can make the application’s execution
opaque to the manager, leaving it unclear what the appli-
cation is actually doing or how it is affecting the building’s
operation. Indeed, each of the applications cited above was
either evaluated in simulation or with the carefully curated
trust and watchful eye of a building manager. We therefore
propose two safety properties that a building application
runtime should provide: 1. (principle of least privilege) en-
sure that applications interacting with digital and physical
building resources only access what is necessary, 2. (re-
source isolation) enforce that the impact of applications
on building resources are constrained within bounds set
by the building managers, including potentially indirectly
affected ones such as temperature, energy, and peak power
due to the interconnected nature of building systems.

In this paper, we propose PlayGround, a “safe” operating
system (OS) abstraction for buildings that enables the ex-
ecution of untrusted, multi-tenant applications in modern
buildings. The goal of PlayGround is to encourage innova-

https://gitlab.com/mesl/brickserver/brick-server-playground

tion and exploration of how modern building applications
can provide value to occupants, managers, and other stake-
holders while avoiding the intensive manual effort required
to deploy them safely. While prior work has proposed
various access control [5], [20] and execution isolation [3],
[21] mechanisms, these require intricate configuration and
can impose substantial maintenance burdens on building
managers. We integrate a semantic representation of the
building — Brick [14] — to imbue our OS services with
detailed knowledge of the building, allowing it to perform
automatically the same procedures and checks that would
normally be performed by the building manager, and to
a greater degree of fidelity. This also allows all system
configurations to be specified declaratively.

Specifically, our contributions are: 1) a detailed
description of a safe building OS capable of running
untrusted user applications, comprising: 2) a dynamic
fine-grained semantic access control mechanism, and 3) a
resource isolation mechanism that is aware of the topology
and composition of building systems.

II. BACKGROUND AND PRIOR WORK
A. BMS and Building Control Logic

Building Management Systems (BMS) monitor and
control various building parameters by controlling
subsystems like heating, ventilation, and air-conditioning
(HVAC) systems, lighting systems, and fire safety systems.
Among them, HVAC systems have gathered much research
interest for their significant energy impact. Air Handling
Units (AHUs), which handle the conditioning of the air
supplied to the building, and Variable Air Volume (VAV)
boxes, which recondition the air supplied to each zone,
are common control objectives in HVAC systems.

Crucially, although BMS are typically isolated from the
public internet behind a firewall or airgapped network,
there is often little security inside the building network.
Some building network protocols do provide support
for modern access control mechanisms [22], but widely
deployed protocols like BACnet provide neither authoriza-
tion nor authentication mechanisms within the network.
Support for auditing writes within the BMS is also rare. As
a result, building managers must be careful to admit only
trusted and carefully tested applications into the network.

B. Computing and Building Operating Systems

Our proposed approach to a safe building operating
system takes inspiration from classical operating systems
(OS). Classical OS provide safe abstractions of underlying
hardware that allow many untrusted applications to
execute over shared resources, where a centralized trusted
kernel operates in a protected memory region to provide
several essential services. These include a hardware
abstraction that insulates users and applications from
the complexities of direct hardware interaction and allows
the OS to multiplex access, a scheduler that synchronizes
the execution of applications and handles the assignment

Temp_Sensor

type
a) ZNT-101 Room-101 —ype, Room

eeds
type

——> VAV

isPointOf
VAV-101
prefix brick: <https://brickschema.org/schema/1.3/Brick#>
prefix ex: <http://example.com/ex>
select ?s where {
b) ?vav brick:feeds ex:Room-101
?vav a brick:VAV . # "a" means is type of
?vav brick:hasPoint ?s .
?s a brick:Temperature_Sensor . }

Fig. 1: a) An example Brick graph describing the composition of a
VAV, a room, and a temperature sensor (prefixes ex: omitted for
brevity). b) An example SPARQL query that finds the temperature
sensor(s) of the VAV(s) that feeds ex:Room-101.

of OS resources, strict memory isolation between processes
to ensure misbehaving processes do not interfere with the
operation of the system and other processes, and finally,
access control mechanisms that ensure that users and
applications do not gain unauthorized access to resources.
These abstractions are key to providing multi-tenancy, the
ability of an OS to support the safe execution of multiple
independent applications over shared resources.

Prior work proposes that operating systems for
buildings should provide many of the same properties as
traditional OS [3]. Indeed, there are several similarities:
buildings contain heterogeneous hardware that must be
abstracted away to simplify application development;
buildings must also maintain safety- and comfort-critical
constraints like indoor temperature and air quality.
Other academic efforts augment the building OS with
additional services, like data archival [3], [4], rule-based
data sharing [21], and decentralized authorization [5], [20].

C. Building Semantic Metadata

Semantic metadata is an emerging family of formal
digital representations of buildings that encode cross-
subsystem, vendor-agnostic, and machine-readable de-
scriptions of the resources, assets, and 1/O points in build-
ings [23]. They replace existing ad-hoc and unstructured
labeling schemes that underlie existing approaches to cat-
egorizing building data [14], [24]. The lack of standard rep-
resentations of buildings and data is a major factor imped-
ing the adoption of intelligent building applications [25].

Efforts to standardize digital descriptions of buildings
have crystallized around graph-based models built
with the Resource Description Framework (RDF) W3C
standard. These include Brick [14], RealEstateCore [17],
Building Topology Ontology (BOT) [26], and ASHRAE
Standard 223P [16]. Building platforms and systems have
been proactively integrating them across industry and
academia sectors [7], [8], [18]. Extensive research has
also been done on efficiently generating the metadata
description of a building based on existing information
from BMSes and others [24], [27]-[30].

Our system incorporates the Brick metadata schema.
A Brick model is a graph that represents the assets and

4 Users m &) %
___ 8
Web Ul (Appl |[J(AppX | P
RESTful API Interface 8
: App Steward
Permission Resource
Manager Regulator 2
B S
e,
AR EIE
_______________ S
Transaction Resource PrOXy ®
L
@ 8 [Interfaces]
\ - J
0@ B8O
00 =@

Logical

Fig. 2: Architecture of PlayGround with a conceptual “kernel”/“user”
space boundary and five kernel components.

I/0O points in a building, and the relationships between
them. This captures the composition and topology of the
building formally, permitting the OS to reason about how
application actions can influence each other, the building,
and the occupants. A Brick model (graph) is expressed as
a set of subject-predicate-object triplets, each encoding a
relationship (predicate) from a subject entity to an object
entity. Entities and relationships are identified by URIs,
but are typically written in an abbreviated form (e.g.
brick:Temperature_Sensor). An example Brick graph
is shown in Figure 1.a. Applications query Brick graphs
using the standard SPARQL query language: the query in
Figure 1.b will return ex:ZNT-101 on the example graph.

III. SYSTEM DESIGN

PlayGround features a conceptual separation of user/k-
ernel space analogous to classical OS. Our kernel design
has five major components as illustrated in Figure 2:
1) Resource Proxy, 2) Brick Oracle, 3) Permission
Manager, 4) Resource Regulator, 5) App Steward. The
Resource Proxy provides the hardware abstraction and
handles actual access to various cyber-physical building
resources such as sensors, actuators, data storage, and
alarms. The Brick Oracle contains a queryable Brick model
representing a semantic, graph-based representation of
the building’s structure, subsystems, and I/O points.
The Permission Manager is an authorization service that
manages and enforces the access control (capability)
policies for various entities in the system through a novel
graph-based mechanism. The Resource Regulator enforces
two forms of resource isolation: 1) per-action value guards
inspecting application writes, and 2) live resource tracing
mechanisms tracking consumption constantly. Finally, the
App Steward manages the life cycle of each app instance
from registration to termination.

Applications are separated from the kernel services
through a RESTful API service provided by the system.

Some service endpoints are privileged (e.g., configurations
on these kernel components) and can only be performed
by privileged users i.e., building managers; all others
require authorization by the Permission Manager. We
then elaborate on the design of each component below.

A. Brick Oracle

The Brick Oracle is a graph database engine hosting
the Brick models of any buildings under the supervision
of a PlayGround instance. A building’s Brick model stores
rich semantic data on the building’s architecture, the
assets and equipment within the building, the topology
and structure of the building’s subsystems (e.g., HVAC,
lighting), the data sources and command points presented
by the building’s BMS, and how all of these elements relate
to one another. The graph database exposes a SPARQL
query endpoint which allows applications to 1) retrieve
metadata about buildings and building resources, and
2) define (sub)sets of resources. This feature is enough
to support existing metadata-based application runtimes
and frameworks [7], [8], [23].

The choice of Brick as the metadata representation
building is significant. Brick’s design enforces uniformity
in how buildings are modeled; this is further assisted by
new automated workflows [25], [27], [31]. Normalizing
how buildings are modeled makes it possible for building
managers, through PlayGround, to define access control
policies, identify resources, and configure applications
through queries against a building’s model. The config-
uration of PlayGround is largely defined declaratively by
queries against the Brick Oracle (§11I-D,§III-E).

This has two advantages. First, this reduces the effort
required to manage complex access control policies. Rather
than managing long flat lists of equipment names and
points, PlayGround allows policies to be defined by how
resources relate not just to one another, but also to the
building’s occupants, application users, and the building
itself. Second, as the underlying building evolves through
natural churn (repairs, remodels, etc), policies can be
automatically refreshed so they remain accurate.

B. Resource Proxy

The Resource Proxy provides read or write access to
physical and logical I/O ”points”. This includes physical
points such as the building’s sensors and actuators, and
logical points like timeseries histories and alarms. The
Resource Proxy abstracts away the different protocols
and APIs required to access these resources, and unifies
access behind a generic read/write interface. Each point
is represented in the Brick model; thus, the read/write
interface just requires a Brick reference (the name of
the point in the Brick model) to direct the payload to
the correct location. Writes take a value and a set of
standard flags; reads take a time range. The Brick model
captures whether a point supports read-only, or read-
write operations. The Resource Proxy logs all read/write

b) User Permission Profile Assignment

Capability List

John Doe [Grad_Student(ex:RM-101),]

a) Example User Permission Profile

Def Grad_Student(room: brick:Room)
READ+WRITE

SELECT ?p WHERE {

?e brick:hasLocation {room} .

?p brick:isPointOf ?e .

?p a brick:TemperatureSetpoint .}
READ

SELECT ?p WHERE {

?e brick:hasLocation {room} .

?e brick:hasPoint 7p .

?pa’o.

FILTER (70 IN

user speci

¢) Capability of John Doe

Brick Reference Permission

L]

[

[

o

A ex:RM-101-0Occupany-Sensor READ V!
(brick:TemperatureSensor, N
brick:OccupancySensor, > ex:RM-101-Temp-Sensor READ .
brick:0n_0ff_Command)) ex:RM-101-Temp-Setpoint WRITE .

3 ex:RM-101-SmartPlug-Switch READ : :
"

ex:RM-101-Temp-Sensor

g) Capability of Genie of John Doe

Brick Reference Permission

ex:RM-101-Temp-Setpoint
ex:RM-101-SmartPlug-Switch

Delegation

d) App Manifest e) Example App Permission Profile

Genie (a Zone Personalization App)

Resources:
App1Permission(room)]
elegation Scheme: Intersection
equest Resolution: 1hz
xternal Resources:
https://weather.com/api/get

Def Genie(room: brick:Room)

READ+WRITE

SELECT ?p WHERE {

?e brick:hasLocation {room} .

?e brick:hasPoint 7p .

pa’o.

FILTER (70 IN
(brick:0n_0ff_Command,
brick:TemperatureSetpoint)) }

READ

SELECT ?p WHERE {

?e brick:hasLocation {room} .

?e brick:hasPoint ?p .

D
R
E

f) Raw Capability of Genie

Brick Reference Permission

ex:RM-101-Temp-Sensor READ | ?p a brick:TemperatureSensor . }
ex:RM-101-Temp-Setpoint WRITE
ex:RM-101-SmartPlug-Switch ~WRITE

READ
WRITE
READ

Fig. 3: A sample derivation procedure of the capability of the app Genie on behalf of the user John Doe. Note the effect of the intersection
delegation scheme (marked in red). For brevity, we list “WRITE” instead of “READ+WRITE” in subfigures c, f, and g.

requests in a transaction log with additional metadata
including the timestamp and identity of the requester.
Other components in the system and building managers
may use this information to relinquish controls, investigate
users/apps, and so forth. Due to the simplicity of the
read/write interface, it is also straightforward to extend
the Resource Proxy to new types of building resources.

C. App Steward

The App Steward manages the entire life cycle of
each application including registration, execution, and
termination. PlayGround hosts every application locally
by loading their front-end as external resources into the
web UI of PlayGround and executing their backend servers
in isolated containers. By default, all app containers can
only access the system’s API. This way PlayGround ensures
full control over the applications and their data flow.

1) Registration: Every application needs to be approved
by the building managers to be “installed” into the system
on registration. To be able to host them, we require
app developers to upload the code of both the frontend
interface and the backend service per registration. We also
require the developers to provide a manifest specifying
the permission profile, action frequency, and external
endpoints of the application. The permission profile and
delegation scheme together define the capability required
by this app in a graph-based format (§III-D). The action
frequency specifies the maximum rate that the app
can make requests at. The external endpoints are vital
resources other than the system API endpoints that this
application would need to function properly.

Figure 3.d contains an example app manifest. This
example application wants to make requests at most
every second and access an external weather service API
endpoint. Building managers may inspect the app manifest
(and optionally the code) to decide whether or not to ap-
prove it, before it can be instantiated by users. Approvals

can be reverted, resulting in the termination of existing
instances and the removal of the app from the system.

2) Execution: Fach application instance for each user
runs in its own container. This allows PlayGround to
precisely monitor the frequency and content of requests
against the building, as well as ensure the application
is only accessing resources the associated user has
permission for. Compared to prior work where one external
application serves all users on the system, this effectively
prevents over-privileging applications.

3) Termination: An app instance can exit normally, be
gracefully terminated, or be forcefully killed. An app will
exit normally if a user is done with using it by clicking
the exit button or being idle for too long. Sometimes, the
system may require an app instance to be stopped e.g., the
app is disapproved or this instance is breaking resource
constraints (§I1I-E). We offer a mechanism to allow the
app to terminate gracefully after receiving the request
e.g., cleaning up things and relinquishing certain controls,
but the App Steward may still force kill an app instance
(and relinquish all relevant points) when necessary.

D. Permission Manager

Permission Manager is the authorization service in our
system; it also plays a key role in resource isolation.
The capability of each entity (user/app) in our system is
managed in a novel graph-based format we call permission
profile. A permission profile is a function-like object
that takes in a few Brick-typed arguments and returns
two lists of building resources for read and (read plus)
write capability respectively. The derivation of the two
capability lists is defined by two SPARQL queries which
use the provided arguments as parameters. Note that the
permission profile is statically typed — arguments must
be of the specified Brick class. Upon any read/write access
to building resources, the Permission Manager checks the

Resource Constraint Storage
inquiry inquiry
ex:floor1_energy_zone_meter 100
ex:AHUT_cooling_power_meter 100
. [t Value Guard
Resource Monitor i App Steward ! Permission pTTTTTTT T '
«‘H\ regulating Y resource, valu Manager resource, Ualuq\: Policies for resource !
. 1 I
f\ policy ! Appl i Actuation | Actuation)I> [ML Model } N
oversee critical |——) terminate | @ i L & p if valid | :
resource points | = 5 ! . ! imulation :
— = 1 ! 1 !
RS A R S ey [— I
2
.) . Transaction . if invalid if invalid
inquiry Log Resource Proxy
if valid

Interfaces }

Fig. 4: The system components involved in a user/app making an actuation (write) request to a resource point.

capability of the requester to verify whether this is an
authorized attempt and approves/declines accordingly.

1) User Permission: To define a user’s capability, the
building manager just needs to choose or create a proper
permission profile and specify the argument(s). Multiple
permission profiles can be applied to one user — the actual
capability of this user is defined by the union of these pro-
files. Consider Figure 3: User John Doe’s capability is de-
fined by one single permission profile named Grad_Student
with argument ex:RM-101. The SPARQL query results
define the points this user is authorized to read/write. If
there is a need to update the capability of John Doe, the
building manager can simply change the arguments passed
to Grad_Student or assign more permission profiles to this
user. The Grad_Student permission profile can be reused
on other users with potentially different parameters. The
building manager may also directly edit the SPARQL
queries in the profile to enforce updates on the capabilities
of all users under this permission profile at once.

2) App Permission: Recall that applications are re-
quired to provide a manifest listing the permission profile
and the delegation scheme per registration. Users instan-
tiate applications with arguments to the application’s
permission profile. The arguments must be from the user’s
capability list or the arguments used to instantiate any of
the user’s permission profiles. This ensures the application
cannot escalate privileges beyond what the user can do.
For the example in Figure 3, John Doe can instantiate
Genie with the four entities in Figure 3.c and ex:RM-101
(the argument of his permission profile Grad_Student), out
of which ex:RM-101 is the only option of required type
brick:Room. The capability of this app instance, as listed
in Figure 3.f, is then computed similarly by the SPARQL
queries defined in permission profile App1Permission
(Figure 3.e) with argument Grad_Student.

When an app instance is making write or read requests
to resources, its capabilities are delegated by the user.

PlayGround provides two types of delegation schemes:
intersection and augmentation. App developers specify the
desired delegation scheme in the manifest and let the
building manager decide whether it’s appropriate. The
intersection scheme is intuitive — the final capability of
an app on behalf of a user is the intersection of the capa-
bility of this app instance and the user. In our example,
though genie app should have read plus write capability to
ex:RM-101-SmartPlug-Switch, it is degraded to read after
the intersection since John Doe has only read capability to
it (highlighted in red in Figure 3). Augmentation grants
the app instance the full capability as defined by its per-
mission profile, regardless of whether the user has those ca-
pabilities or not. This is particularly useful when the appli-
cation may need to access low-level resources that are not
authorized for regular users. For example, to fulfill a user’s
zone comfort request, an HVAC control app may need to
operate on AHU setpoints that are inaccessible to the user.

Permission profiles provide a fine-grained and adaptive
definition of capabilities and effectively avoid over-
privileged scenarios due to gross-grained policies over
fixed domains like buildings or floors. Meanwhile, the
maintenance and extension of them are as expressive and
simple as writing/modifying Brick queries and arguments.

E. Resource Regulator

The Resource Regulator implements resource isolation.
We allow building managers to specify constraints on the
value of critical building resources e.g., peak power con-
sumption, and to customize regulation policy i.e., actions
to take once the constraints are broken. This allows build-
ing managers to bound the behavior of untrusted applica-
tions to avoid them “crashing” the building. Resource Reg-
ulator has three main sub-components, described below.

1) Resource Constraint Storage: The table of resource
constraints relates Brick references (representing I/O
points and building resources) to their constraints. For
example, in Figure 4 we set an upper bound of 100 on

ex:AHUT_cooling_power_meter and 100 on ex:floorl_
energy_zone_meter. The first constraint refers to a
physical energy meter; the second refers to a virtual meter
that aggregates energy consumption (defined declaratively
by a query against the Brick Oracle). The Resource
Regulator ensures that the value of the resources does not
exceed the corresponding constraints. Constraints apply
not only to read-only resources such as sensor readings but
also to writable resources such as actuators and setpoints.

2) Pre-write Value Guard: Pre-write value guard is a
preemptive mechanism to ensure resource isolation. It
looks at the proposed write value of an authorized write
request and only approves it if the value is decided to be
valid. The decision on validity is made by the validators
assigned to the resource targeted by the write request.
Value validators are functions that take the target resource
and the write value as inputs and return a boolean value
indicating the validity or otherwise raise an error on failure
to make the decision. Building managers can assign a value
validator to a set of resources defined by a SPARQL query
— this assignment is adaptive and fine-grained. Building
managers may also assign more than one validator to a set
of resources to form a queue of validators. The value guard
will only approve the request when all validators in the
queue approve (failed ones skipped). The system defaults
to refusing actions against resources without a validator.
For the example in Figure 4, we assign various example
validators including “ML Model” and “Simulation” to the
target entity. If the “ML Model” fails and the “Simula-
tion” validator returns false, value guard will immediately
disapprove this request, skipping any subsequent valida-
tors. Validators can always query the resource constraint
storage and Brick Oracle for necessary information.

3) Live resource monitor: Live resource monitor is
a passive isolation mechanism. The resource monitor
continuously watches critical resource points as set up by
the building managers (e.g., resource points that measure
or represent power or energy consumption) and takes
actions following the provided regulating policy when the
values of the watched resources exceed the constraints
specified in resource constraint storage (see Figure 4).
The action and the subject of the action are fully up
to the policy — it may freely interact with other kernel
components such as the Resource Proxy, Brick Oracle,
and App Steward to obtain useful information and carry
out the action. For example, the default fallback policy in
our system will relinquish all relevant control points and
terminate apps that have written to those points.

IV. IMPLEMENTATION

We have built a prototype of PlayGround to validate our
design ideas. Here we describe our implementation as a
reference (see Appendix for more details). PlayGround
comprises a set of Docker containers. One container
implements the functionalities of each kernel component
of our design described in §III and offers a RESTful

API interface exposed to the users. The other containers
host database services to store essential information in
the kernel, including an RDF-graph database for Brick
modelings and SPARQL queries, an object database
for system policies such as application manifests and
permission profiles, and a time-series database for
transaction logs. Privileged users, i.e., building managers,
may manage the system policies and non-privileged users
may initiate read /write requests and Brick queries through
the API endpoints or a basic web UI. Users instantiate
and interact with installed apps through the web UL

The declarative aspects of our design rely on SPARQL
queries. To speed up these queries, we implement in-
memory caching and pre-computation. When the system
starts, a background thread pre-computes frequently
used queries such as those for capability derivation and
resource-validator mappings. These pre-computed results
are then stored in the cache in the format of key-result
pairs, where key is the identifier of the query plus query
inputs. Uncached queries are computed on-demand and
cached. PlayGround suspends all system services of a
building while its Brick graph is updated. After the graph
of a building has been updated, all related cache entries
are invalidated and the pre-computation process restarts.
We evaluate the effect of caching in §V-E.

V. EVALUATION

To evaluate the efficacy of our system, we first inspect
our two proposed mechanisms for access control (Permis-
sion Manager) and resource isolation (Resource Regulator)
with two real-world case studies respectively. We then con-
duct the microbenchmark showing that the runtime over-
head of these mechanisms is reasonable and scales well.
We conclude with real-world deployment observations.

A. Setup

For the following two case studies, we deploy PlayGround
on a real-world multi-purpose building on campus. We
support the control of the HVAC system and 80 smart
plugs through a BACnet driver interface in the Resource
Proxy. In companion, we have a Brick representation of
this building which describes arrangements of rooms and
floors, and specifications of hardware including over a
thousand HVAC points and the smart plugs (hardware
limit, external reference to the BACnet objects, etc.) with
their relationships to rooms/floors. The building prefix
is again ex:. We conduct the case study on one AHU
(ex:AHUT) and two offices (ex:RM-101, ex:RM-102) fed by
this AHU to minimize the affected residents.

B. Case Study #1 on Access Control

In this first case study, we evaluate our graph-
based capability (access control) system with the zone
personalization application, Genie [13]. Genie allows
users to personalize the HVAC settings in their zone by
adjusting the temperature setpoint. Users can also control

TABLE I: Detailed timeline of the case study #1 on access control.

Event and Effect

Two new grad student users A and B signed up to the system.
BM assigned Grad_Student permission profile to them with
1 arguments ex:RM-101 and ex:RM-102 respectively.

Our system derives the capability of new users A and B.

A and B instantiated Genie with ex:RM-101 and ex:RM-102 as
the argument of Genie’s permission profile respectively.

The actual capability of the two genie app instances delegating
AEB were derived (refer Figure 8 for details).

A and B both adjusted the temperature setpoint for their
respective rooms successfully. A tried to control the smart
3 plug but got “permission denied”.

Grad_Student profile allows only read access to smart plugs.

A reported this. BM then updated the Grad_Student profile by
rewriting its R/W query to include the smart plug (brick:0n_
Off_Command) in the results (see updated one in Appendix E).

Capabilities of A and B were updated noting the updated profile
Grad_Student. The capability of two app instances on behalf of
them was also re-derived subsequently by the system.

A retried to control the smart plug and was successful.
The updated capability took effect instantly.

BM moved the smart plug from RM-101 to RM-102 and
updated the Brick graph of the building accordingly.

Our system recomputed the above capabilities noting the
changes in the building environment.

A and B both adjusted the temperature setpoint for their
respective rooms successfully. A tried to control the smart plug
7 | but got “resource not found”. B successfully controlled the plug.

[Our system denied A’s request but approved B’s request since
the plug was no longer in RM-101 but in RM-102.

the smart plug within the zone with it. We ported Genie
to use the interface provided by our system kernel —
given a provided room, it finds the temperature setpoint
and the smart plugs in the room through a Brick query
and controls them through Resource Proxy.

We start with the initial state of the system of this case
study. Recall that the capability of a user or app is defined
by permission profiles composed of Brick queries and the
provided arguments. The building manager (BM) reused
the example permission profile Grad_Student we’ve shown
in Figure 3 and incorporated it into the system. (BM
can always write more Brick queries to define additional
permission profiles. See Appendix E.) Meanwhile, BM
approved the app Genie, with the app manifest and
permission profile we’ve seen in Figure 3. BM placed a
smart plug in RM-101, represented as a brick:0n_Off_
Command entity as a point of ex:RM-101 in the Brick graph.

We list actions taken by users during the case study
and the effect on our system in Table I. We also plot the
trace of relevant hardware readings in Figure 5 along with
the event timeline. We can see that temperature sensor
readings were changing according to user actions on the
temperature setpoint (with slight ventilation delay) and
smart plugs were turned on and off when the control
actions were successful (at the time of event 5 and 7).
Observations: Event 1, 4, and 5 show the flexibility of our

‘ —e— Temp Setpoint —— Temp Sensor =—— Smart Plug
T T T T
74 | RM101 — - On
72+
70 - ;
m 68 z
g 66 [| | | | L Oft £
= T T T T &
g 74 || RM102 — 100 <
S T2 ©
70 sex
68 -
66 [| | | | - Oft
2:00pm 2:10pm 2:20pm 2:30pm 2:40pm
DO O® ® ®

Event Timeline

Fig. 5: Zone thermal conditions in Case Study #1. Circled numbers
refer to the event number in Table I.

capability system. Building managers can easily create and
assign capability policies, and they can also update exist-
ing policies without worrying about running applications.
Event 2, 3, 6, and 7 demonstrate that our graph-based per-
mission profile and per-user per-app app instance design
ensures access control at fine granularity avoiding over-
privileged cases — app instances of the same app (genie)
delegating user A and B were defined with exclusive capa-
bilities and couldn’t interfere with each other’s resources.
Event 6 and 7 further exhibit that our (capability) system
may work adaptively throughout building environment
changes — after moving the smart plug, Genie instance of
A could no longer find the plug as expected and meanwhile
the instance of B gained the capability to control it.

C. Case Study #2 on Resource Isolation

In this second case study, we evaluate the efficacy of
our Resource Regulator in maintaining resource isolation
constraints and preventing authorized yet potentially
harmful actions from (untrusted) applications. We prepare
a sample application that can control the points of a
given AHU. The app comes with a permission profile
that uses the augmentation scheme and asks write access
to all points of the given argument (an AHU). This
ensures that every action taken by an instance of this
app on the assigned AHU in its argument is authorized
by our capability system. The cooling command of the
AHU, which decides how much cooling (%) the AHU will
produce, will be the main test subject of this case study.

At the initial state of the case study, BM approved
and installed this app. We also set up a test user with
write capability to ex:AHU1 and its points. Recall that
the resource constraint policies in Resource Regulator are
managed by resource constraint storage, resource moni-
tor, and pre-write value guard. To protect hardware and

TABLE 1I: Detailed timeline of case study #2 on resource isolation.

Event and Effect

1 | Wrote 0% to the cooling command, successful.

) Wrote -100% and 200% to the cooling command, both failed.
Blocked by the range checker.

Wrote 95% to the cooling command, unsuccessful.

3 | Blocked by the power predictor since the prediction is
103kBTU/h, larger than the 100kBTU /h constraint set.

BM updated the brick graph such that now the maximal of
the cooling command is 80%.

Wrote 95% to the cooling command, unsuccessful.

Blocked by the range checker instead, for its higher priority.

6 | Wrote 75% to the cooling command, successful.

BM updated the upper bound of ex:AHU1_cooling_power_meter
from 100 to 60kBTU/h in the constraint storage.

System relinquished the cooling command and killed this app.

8 | The resource monitor spotted the cooling power had exceeded
the constraint and took action following the requlating policy.

save energy, BM set an upper bound on the cooling
power meter of AHU1 (ex:AHU1_cooling_power_meter) at
100kBTU/h in the constraint storage and let the resource
monitor oversee it. The regulating policy is configured
to relinquish the cooling command and terminate any
existing app instances that have written to it when the
cooling power is over the above constraint. BM also set up
two validators on the cooling command of ex:AHUT in the
value guard (as ordered in the queue): 1) a range checker
that checks whether the input cooling command value falls
between the maximal and minimal defined in Brick graph
(0 and 100 in this case); 2) a power predictor that predicts
the cooling power of an AHU given the input cooling
command based on historic data using a naive two-layer
neural network and checks whether it is smaller than the
upper bound defined in the resource constraint storage.
We describe the detailed timeline of actions taken by
users in this case study in Table II and plot the cooling
command/power of AHU1 throughout this case study
in Figure 6. We can see that the cooling power and cooling
command were changing according to user actions at
event 1 and 5. Also, note that the cooling command was
relinquished and dropped to 0% immediately after the
power constraint was adjusted by BM (event 7).
Observations: Event 1-6 demonstrate the efficacy and
flexibility of our pre-write value guard. Two validators
worked together to preemptively block write actions
following policies defined by BM and the policies could be
updated in real-time. Event 6-8 show the effectiveness and
adaptability of our live resource monitor. It successfully
aborted actions that were not blocked by the value guard
but had violated the latest updated resource constraints.

D. Comparison to Ezisting Approaches

We here remark on limitations in existing access
control and resource isolation approaches from building

80 - L T - 200

— —&— cooling command T‘

= cooling power .
- 60 =
g ~
: £
§ 40 (- 100 i
o0 \ 8
£ 20| 5
i) !
3 J

0 S O e =0
| | |

L L
2pm 2:10pm 2:40pm

D2 ® ®OB

Event Timeline

2:20pm 2:30pm

Fig. 6: AHU1 cooling conditions throughout Case Study #2. Circled
numbers refer to the event number in Table II.

and computer systems domain and how aspects of our
approach complement them. First, efforts to implement
access control in buildings often require deep knowledge
of custom ad-hoc policy languages. Nevertheless, these
policies must be written on a per-building basis with
explicit knowledge of the available resources in the
building and how they relate to one another — an update
on the building usually leads to an extensive rework. This
micromanagement can be unrealistic in modern buildings
which can contain hundreds of equipment assets and
hundreds of thousands of I/O points for sensing and
control. We address this issue by utilizing a structured
semantic representation of the building in our proposed
OS. Access control policies in PlayGround are written
expressively in a standard graph query language without
substantial learning costs. Moreover, these policies are
generic to buildings — they can work with updated build-
ing environments or be portably reused on new buildings.

Second, most efforts do not properly address the issue of
application isolation in the building domain. This is where
buildings are fundamentally different from computers.
Traditional OS treats shared resources as fungible, i.e.
it does not (usually) matter which CPU cycles or which
physical memory addresses an application is assigned,
or when they are assigned. However, the high degree of
interconnectivity between building resources means that
control of one resource (e.g., a hot water coil) can influence
the behavior of separate but downstream resources (e.g.,
the position of a valve) and the resulting effect on occupied
spaces (e.g., the temperature of a room). PlayGround
addresses this by allowing building managers to define
arbitrary connections between resources of concern and
relevant control points expressively in the format of
regulating policy and resource constraints.

E. Microbenchmarks

To understand the cost of our graph-based mechanisms
and the effectiveness of caching, we measured the
runtime of relevant system services including capability
derivation (computing capabilities of an app delegating a
user), validator mapping (finding the validator queue

Capability Derivation Validator Mappings
T T T = T T T

120

©
(=)
T

—8— w/o cache

— W/ Ca:he//a/n |

® ® .4 .o ® 1L @ ® * . bl

1 2 3 4 5 1 2 3 4 5

#validator assignment policies

Runtime [ms]
w o
s 3
T T

o
T

Fassigned permission profiles

Fig. 7: Time consumption of capability derivation vs. number of per-
mission profiles assigned to a user; and time consumption of resource
validator mappings vs. number of validator assignment policies.

assigned to one resource), and resource specification
retrieval (obtaining the essential metadata to read/write
a resource) on the Brick graph of the same building
used in case studies, with 1344 readable/writable resource
points described. We also benchmark the cost of the two
validators used in case study #2. The tests are executed
on a machine with an AMD 3960X 24-Core CPU, RTX
3090 GPU, and 64GB memory. We measure the caching
effect after cache entries have been fully pre-computed.
To benchmark capability derivation, we measure the
average time consumption of the capability derivation
of the same app delegating users with 1 to 5 various
permission profiles assigned to them. Similarly, we obtain
the average runtime of validator mapping by measuring
the average cost of mapping all available resource points
when there are 1 to 5 real-world validator assignment
policies in the system. See Appendix E for all detailed
policies (queries). We present the results with and without
caching for both operations respectively in Figure 7. We
can see a clear increasing pattern without caching. In
contrast, caching drastically speeds up the process to
<1ms and scales well. The total memory consumption of
caching both operations in full (for all the resource points
under five different profiles/policies) is 4.8 MB at its peak.
We benchmark the resource specification retrieval
process by measuring the average time consumption
of getting the read/write specifications of a thousand
randomly sampled resource points in the graph. We get an
average runtime cost of 7.9 ms without caching and 0.24 ms
with caching. We measure the efficiency of the range
checker validator on a thousand random resources and 3
random input (writing) values and obtain an average of
9.1 ms without caching and 0.5 ms with caching. Similarly,
we measure the efficiency of the power predictor validator
and get an average of 1.4 ms runtime cost (with cuda). The
peak memory consumption of caching these operations for
all resource points is 3.3 MB. The memory consumption is
reasonably low and we expect it to scale effectively with
additional resources or buildings in the system.

F. Real-world Deployment

As of the time of submission, we have deployed our
system on two real buildings on campus (including the one
used in the case studies), beta-serving over 30 volunteer

students and staff for three months consecutively. Two
building applications (a power estimation app in addition
to the Genie application we have mentioned above) are
installed and work out of the box with no “one-off” modi-
fications. Our resource isolation and capability mechanism
successfully enables personalized zone control and building
telemetry with these two (untrusted) applications while
not sacrificing the safety of the building — the resource
constraint set by us e.g., cooling and heating power of
various AHUs and maximum power consumption of smart
plugs were successfully enforced. The deployment to a
second building was straightforward — system policies
e.g., permission profiles, validator assignments, and
regulating policies were directly shared and reused in these
two buildings. We include all these policies we create here
as template examples in the system so that future building
managers with no prior knowledge of programming can
get a bootstrap adopting our system. We plan to provide
more ready-to-go templates for future work.

G. Limitations and Future Work

PlayGround does have limitations that we would like to
address in the future. First, our system does not handle
the situation where multiple users have conflicting write
requests on the same resource point — we would like to ex-
plore various arbitration mechanisms to solve this problem
for future work. Second, our system lacks a standardized
method to enable building application compatibility
checks. We plan to incorporate semantic sufficiency [31] to
fill this gap. Last, we do not have a formal user study of
our system with building managers though we have been
working closely with them to understand the problem
statements. We leave this as the subject of future work.

VI. CONCLUSION

We have developed PlayGround, a safe building oper-
ating system that incorporates Brick semantic represen-
tations of buildings with two proposed novel mechanisms
including 1) a graph-based capability mechanism for access
controls, namely permission profile; 2) a resource isolation
mechanism with support of both pre-action interven-
tions and telemetry-based live inspections. PlayGround
demonstrates the feasibility of hosting untrusted, multi-
tenant building applications safely while avoiding intensive
maintenance and deployment costs. We accomplish this
by empowering the OS services with detailed knowledge
of buildings and supporting a declarative configuration
setup. We envision that building managers with little
or no programming background can easily adopt and
maintain BOSes following our design with an emerging
Brick-driven ecosystem including applications and various
system policy configurations in the future.

REFERENCES

[1] N. E. Klepeis, W. C. Nelson, W. R. Ott, J. P. Robinson,
A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern, and W. H.
Engelmann, “The national human activity pattern survey

2]

3]

(4]

[6]

7]

[9]

(10]

[11]

(12]

(13]

(14]

[15]
[16]

(17]

(nhaps): a resource for assessing exposure to environmental
pollutants,” Journal of Exposure Science € Environmental
Epidemiology, vol. 11, no. 3, pp. 231-252, 2001.

U. Energy Information Administration (EIA), “Global
energy consumption driven by more electricity in
residential, commercial buildings — eia.gov” https:

//www.eia.gov/todayinenergy/detail. php?id=41753, 2023.

S. Dawson-Haggerty, A. Krioukov, J. Taneja, S. Karandikar,
G. Fierro, N. Kitaev, and D. Culler, “{BOSS}: Building
Operating System Services,” pp. 443-457, 2013.

T. Weng, A. Nwokafor, and Y. Agarwal, “BuildingDepot 2.0:
An Integrated Management System for Building Analysis
and Control,” in Proceedings of the 5th ACM Workshop on
Embedded Systems For FEnergy-Efficient Buildings, (Roma
Italy), pp. 1-8, ACM, Nov. 2013.

M. P. Andersen, J. Kolb, K. Chen, G. Fierro, D. E. Culler, and
R. Katz, “Democratizing Authority in the Built Environment,”
ACM Transactions on Sensor Networks, vol. 14, pp. 1-26, Dec.
2018.

C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee,
S. Saroiu, and P. Bahl, “An Operating System for the Home,”
pp. 337-352, 2012.

G. Fierro, M. Pritoni, M. Abdelbaky, D. Lengyel, J. Leyden,
A. Prakash, P. Gupta, P. Raftery, T. Peffer, G. Thomson, and
D. E. Culler, “Mortar: An open testbed for portable building
analytics,” ACM Trans. Sen. Netw., vol. 16, dec 2019.

F.He, Y. Deng, Y. Xu, C. Xu, D. Hong, and D. Wang, “Energon:
A data acquisition system for portable building analytics,” in
Proceedings of the Twelfth ACM International Conference on
Future Energy Systems, e-Energy 21, (New York, NY, USA),
p- 15-26, Association for Computing Machinery, 2021.

A. Krioukov, G. Fierro, N. Kitaev, and D. Culler, “Building
application stack (bas),” in Proceedings of the Fourth ACM
Workshop on Embedded Sensing Systems for Energy-Efficiency
in Buildings, BuildSys ’12, (New York, NY, USA), p. 72-79,
Association for Computing Machinery, 2012.

X. Fu, J. Koh, F. Fraternali, D. Hong, and R. Gupta, “Zonal
air handling in commercial buildings,” in Proceedings of the
7th ACM International Conference on Systems for Energy-
Efficient Buildings, Cities, and Transportation, BuildSys 20,
(New York, NY, USA), p. 302-303, Association for Computing
Machinery, 2020.

Y. Agarwal, B. Balaji, S. Dutta, R. K. Gupta, and T. Weng,
“Duty-cycling buildings aggressively: The next frontier in
HVAC control,” in Proceedings of the 10th ACM/IEEFE
International Conference on Information Processing in Sensor
Networks, pp. 246257, Apr. 2011.

Y. Agarwal, B. Balaji, R. Gupta, J. Lyles, M. Wei, and
T. Weng, “Occupancy-driven energy management for smart
building automation,” in Proceedings of the 2nd ACM Workshop
on Embedded Sensing Systems for Energy-Efficiency in Building
- BuildSys ’10, (Zurich, Switzerland), p. 1, ACM Press, 2010.
B. Balaji, J. Koh, N. Weibel, and Y. Agarwal, “Genie:
a longitudinal study comparing physical and software
thermostats in office buildings,” in Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp ’16, (New York, NY, USA), pp. 1200—
1211, Association for Computing Machinery, Sept. 2016.

B. Balaji, A. Bhattacharya, G. Fierro, J. Gao, J. Gluck,
D. Hong, A. Johansen, J. Koh, J. Ploennigs, Y. Agarwal,
M. Bergés, D. Culler, R. K. Gupta, M. B. Kjergaard,
M. Srivastava, and K. Whitehouse, “Brick : Metadata schema
for portable smart building applications,” Applied Energy,
vol. 226, pp. 1273-1292, Sept. 2018.

“Project haystack,” 2022. https://project-haystack.org/.
ASHRAE, “ASHRAE’s BACnet Committee, Project Haystack
and Brick Schema Collaborating to Provide Unified Data Se-
mantic Modeling Solution.” http://tinyurl.com/7c9yxbn3, 2018.
K. Hammar, E. O. Wallin, P. Karlberg, and D. Hélleberg, “The
realestatecore ontology,” in The Semantic Web — ISWC 2019:
18th International Semantic Web Conference, Auckland, New
Zealand, October 26-30, 2019, Proceedings, Part II, (Berlin,
Heidelberg), p. 130-145, Springer-Verlag, 2019.

(18]

(19]

20]

(21]

(22]

23]

24]

[25]

[26]

27]

(28]

29]

(30]

(31]

K. Berkoben, C. E. Kaed, and T. Sodorff, “A digital buildings
ontology for google’s real estate,” in International Workshop
on the Semantic Web, 2020.

J. Koh, D. Hong, S. Nagare, S. Boovaraghavan, Y. Agarwal, and
R. Gupta, “Who can Access What, and When?: Understanding
Minimal Access Requirements of Building Applications,” in
Proceedings of the 6th ACM International Conference on Sys-
tems for Energy-Efficient Buildings, Cities, and Transportation,
(New York NY USA), pp. 121-124, ACM, Nov. 2019.

M. P. Andersen, S. Kumar, M. AbdelBaky, G. Fierro, J. Kolb,
H.-S. Kim, D. E. Culler, and R. A. Popa, “{WAVE}: A
Decentralized Authorization Framework with Transitive
Delegation,” pp. 1375-1392, 2019.

P. Arjunan, M. Saha, H. Choi, M. Gulati, A. Singh, P. Singh,
and M. B. Srivastava, “SensorAct: A Decentralized and
Scriptable Middleware for Smart Energy Buildings,” in
2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and
Computing and 2015 IEEE 12th Intl Conf on Autonomic and
Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable
Computing and Communications and Its Associated Workshops
(UIC-ATC-ScalCom), (Beijing), pp. 11-19, IEEE, Aug. 2015.
S.-H. Leitner and W. Mahnke,
architecture for industrial applications,”
Trends Band 26, Heft 4, 2006.

M. Pritoni, D. Paine, G. Fierro, C. Mosiman, M. Poplawski,
A. Saha, J. Bender, and J. Granderson, “Metadata schemas and
ontologies for building energy applications: A critical review
and use case analysis,” Energies, vol. 14, no. 7, 2021.

A. A. Bhattacharya, D. Hong, D. Culler, J. Ortiz,
K. Whitehouse, and E. Wu, “Automated metadata construction
to support portable building applications,” in Proceedings of the
2nd ACM International Conference on Embedded Systems for
Energy-Efficient Built Environments, BuildSys 15, (New York,
NY, USA), p. 3-12, Association for Computing Machinery,
2015.

H. Bergmann, C. Mosiman, A. Saha, S. Haile, W. Livingood,
S. Bushby, G. Fierro, J. Bender, M. Poplawski, J. Granderson,
and M. Pritoni, “Semantic interoperability to enable smart,
grid-interactive efficient buildings,” 12 2020.

K. Janowicz, M. H. Rasmussen, M. Lefrangois, G. F. Schneider,
and P. Pauwels, “Bot: The building topology ontology of
the w3c linked building data group,” Semant. Web, vol. 12,
p- 143-161, jan 2021.

J. Koh, D. Hong, R. Gupta, K. Whitehouse, H. Wang,
and Y. Agarwal, “Plaster: An integration, benchmark, and
development framework for metadata normalization methods,”
in Proceedings of the 5th Conference on Systems for Built
Environments, BuildSys '18, (New York, NY, USA), p. 1-10,
Association for Computing Machinery, 2018.

G. Fierro, A. K. Prakash, C. Mosiman, M. Pritoni, P. Raftery,
M. Wetter, and D. E. Culler, “Shepherding metadata through
the building lifecycle,” in Proceedings of the 7th ACM Interna-
tional Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, BuildSys ’20, (New York, NY,
USA), p. 70-79, Association for Computing Machinery, 2020.
H. Lange, A. Johansen, and M. B. Kjeergaard, “Evaluation of
the opportunities and limitations of using ifc models as source
of building metadata,” in Proceedings of the 5th Conference on
Systems for Built Environments, BuildSys ’18, (New York, NY,
USA), p. 21-24, Association for Computing Machinery, 2018.
F. He and D. Wang, “Cloze: A building metadata model
generation system based on information extraction,” in
Proceedings of the 9th ACM International Conference
on Systems for Energy-Efficient Buildings, Cities, and
Transportation, BuildSys ’22, (New York, NY, USA), p. 109—
118, Association for Computing Machinery, 2022.

G. Fierro, A. Saha, T. Shapinsky, M. Steen, and H. Eslinger,
“Application-driven creation of building metadata models with
semantic sufficiency,” in Proceedings of the 9th ACM Interna-
tional Conference on Systems for Energy-Efficient Buildings,
Cities, and Transportation, BuildSys ’'22, (New York, NY,
USA), p. 228-237, Association for Computing Machinery, 2022.

“Opc ua—service-oriented
Softwaretechnik-

https://www.eia.gov/todayinenergy/detail.php?id=41753
https://www.eia.gov/todayinenergy/detail.php?id=41753
https://project-haystack.org/
http://tinyurl.com/7c9yxbn3

ex:plugl a brick:Active_Power_Sensor;
brick:hasUnit unit:MilliW ;
ref:hasExternalReference [
a ref:BACnetReference ;
bacnet:object-identifier "181160_analogInput_3" ;
bacnet:object-name "AI3 BERT Power Measurement” ;
bacnet:objectOf ex:plugl_BACnetDevice ; 1] ;
ref:hasTimeseriesReference [
a ref:TimeseriesReference ;
ref:hasTimeseriesId
— "0000000-0000-000-0000-000000000000" ;
ref:storedAt "postgres://1.2.3.4:5432/db1" ;] .

Fig. 8 An example Brick resource representation with external
references.

APPENDIX

A. Implementation of Resource Proxy

We store the necessary specification of a resource point
to support read/write operations as external reference
objects in Brick. Resource Proxy retrieves this information
from the graph given the Brick reference and finds the
corresponding interface to carry out the request. We
present an example in Figure 8. Provided with the Brick
reference ex:plugl, Resource Proxy first runs a SPARQL
query to find the type of the external reference, which in
this case is ref:BACnetReference. Resource Proxy then
invokes the driver interface for this resource type with
the payload plus other remaining specifications in the
external reference (object identifier and object upstream
in this example). When a read request is accompanied
by a time range in its payload, it indicates a time-series
read request. In this case, Resource Proxy will look for a
ref:TimeseriesReference object in particular and invoke
the time-series driver. Any failure encountered in the
above process will abort this incoming read/write request.

Various driver interfaces for distinct types of resources
all follow the same signature by inheriting a provided
abstract base class (ABC) — take as input the resource
endpoint plus the payload and perform operations
accordingly. For instance, when there’s a True relinquish
flag in the payload of a write request, it should release or
reset the control over the resource (if possible). To extend
support to new types of resources, we only need to import
new driver interfaces inheriting this ABC to our kernel
program.

B. Implementation of App Steward

All app containers reside in a separate docker network,
where we enforce strict network restrictions as a whitelist-
based “firewall”. By default, the only destination on the
whitelist that an app container can communicate with
is the core container hosting the API interface — the
external endpoints listed in the app manifest are added
to the whitelist respective to the app. App Steward
dynamically maintains these whitelists by manipulating
iptables on this docker network interface. App Steward

also interacts with the underlying docker daemon to
manage each app container instance.

1) Registration: When the registration of an application
is approved, App Steward stores the provided app
manifest and permission profile (find more details on
this in §C), saves the frontend static files, and builds a
docker image for the backend (we require the existence of
a valid dockerfile in the source code).

2) Ezecution: When a user asks to instantiate an
application, App Steward starts a docker container with
the built image of the application and loads the frontend
static files. It also passes a JWT token signed and generated
for this app instance to the container as an environment
variable so that the app instance can use it with the APIs.
Meanwhile, App Steward stores the essential metadata
associated with this app instance such as container id,
the initiating user, and the argument for the permission
profile provided by the user. Applications can call an API
to get a list of resources from which a user can select, for
instance, to specify the room or equipment. This follows
the same rule as the argument that they can provide for
the app’s permission profile.

3) Termination: When an application instance needs
to exit or be gracefully terminated, App Steward always
tries to stop the container with the associative container
id gracefully with a SIGTERM signal. Applications are
expected to react to SIGTERM promptly and perform
necessary clean-ups and relinquish action. If the container
fails to exit within a 30s timeout or it is forcefully
terminated, a force stop (SIGKILL) will be enforced.
A stopped docker container is typically not removed for
faster start-up in the future.

C. Implementation of Permission Manager

The core of Permission Manager is the permission
profiles. We store the SPARQL queries of each permission
profile in f-string format — when invoked, the associated
arguments will be filled in. Permission Manager maintains
the user permission profile assignment table as well. The
capability derivation procedure described in §III-D in
practice would be 1) Permission Manager first looks up
the user permission profile assignment table and computes
the capability of the user given the stored SPARQL queries
and associated arguments; 2) then it uses the arguments
for the permission profile of the app saved by App Steward
per instantiation to compute the raw app capability; 3) it
derives the final capability with the delegation scheme
specified in the app manifest.

D. Resource Regulator

1) Resource Constraint Storage: Resource constraint
storage provides an interface to enquire about whether a
particular resource value exceeds the constraint or not,
preventing other kernel components from raw queries to
the resource constraint table

a) Updated Grad_student

b) Permission profile for lab managers

a) “First Floor” Policy ¢) “VAV-2” Policy

Def Grad_Student(room: brick:Room)

READ+WRITE

SELECT ?p WHERE {

?e brick:hasLocation {room} .

?p brick:isPointOf ?e .

pa’o.

FILTER (?0 IN
(brick:TemperatureSetpoint,
brick:0n_Off_Command))

3

READ

SELECT ?p WHERE {

?e brick:hasLocation {room} .

?e brick:hasPoint ?p .

pav’o.

FILTER (?0 IN
(brick:TemperatureSensor,
brick:OccupancySensor))

Def Lab_Manager(room: brick:Room)
READ+WRITE

SELECT ?p WHERE {

?e brick:hasLocation/brick:feeds*
— {room} .

?e a brick:Equipment .

?p brick:isPointOf ?e . }

READ

NULL

¢) Permission profile plug masters

Def Plug_Master(plug:

— brick:Smart_Plug)
READ+WRITE

SELECT ?p WHERE {

?p brick:isPointOf {plug} .}
READ

3 NULL

Fig. 9: Sample permission profiles we used in case study #1 and the
microbenchmark for permission derivation.

2) Pre-actuation Value Validators: Validators, similar
to driver interfaces in Resource Proxy, inherit an ABC
to make sure that they follow the same abstraction as de-
scribed in §III-E. We can add new validators to the system
by simply importing more child classes. In practice, exam-
ple validators can be prediction functions on energy con-
sumption or some basic range checkers on the write values.

3) Validator Assignments: Recall that building man-
agers may use SPARQL queries to assign validators to a set
of building resources. Unlike permission profiles, the look-
up process to find the validators assigned to a resource here
is reversed — we need to find which set of resources (or
SPARQL-defined policy) includes the resource under ques-
tioning and obtain the validator queue accordingly. How-
ever, query-defined sets are not necessarily mutually exclu-
sive. Therefore we allow building managers to optionally
define the priority of each policy. Policies of higher priority
are looked up first; the order of policies of the same priority
being looked up is random. Once a policy is found to
contain the target resource, the lookup process is finished.

4) Regulating Policies: Again, regulating policies
inherit an ABC and follow the abstraction that takes
as input a pair of a resource and the current value of this
resource (exceeding the constraint), and decide follow-up
actions accordingly. There’s no return value. The exact
behavior of a regulating policy is highly customizable.
With the input provided, an example regulating policy
may first query the Brick Oracle to figure out the attribut-
ing resources and the transaction history within Resource
Proxy to obtain a history of which application on behalf of
which user made what actuation at when to help identify
the guilty applications. Then it may decide to terminate
these applications and relinquish these control points by
interacting with the App Steward and Resource Proxy.

E. Sample Policies Used

The updated permission profile for Grad_student used
in case study #1 is shown in Figure 9.a. The other

SELECT DISTINCT ?p WHERE {
?loc brick:isPartof
— ex:First_Floor .
?equip brick:feeds ?loc . }
?p brick:isPointOf ?equip . -
} d) “Third Floor” Policy
SELECT DISTINCT ?p WHERE {
?loc brick:isPartOf
— ex:Third_Floor .
?equip brick:feeds* ?loc .
?p brick:isPointOf ?equip .

SELECT DISTINCT ?p WHERE {
?p a brick:Point .
?p brick:isPointOf ex:VAV-2 .

b) “AH-4” Policy

SELECT DISTINCT ?p WHERE {
{?p a brick:Point .
?p brick:isPointOf ?equip . b
ex:AH-4 brick:feeds ?equip .}
UNION
{?p a brick:Point .
?p brick:isPointOf ex:AH-4 .}
3 3

e) “Default” Policy

SELECT DISTINCT ?equip WHERE {
?equip a brick:Point .

Fig. 10: Sample validator assignment policies we used in the
microbenchmark for validator mappings.

permission profiles we used to be randomly assigned to
users in the microbenchmark for permission derivation are
listed in the rest of Figure 9. The Lab_Manager permission
profile is defined for lab managers who should have write
access to all equipment points in the assigned room/lab.
The Plug_Master permission profile will grant one user
write access to all points of the assigned smart plug
(brick:Smart_Plug is a customized extension to Brick
not included in the official Brick ontology).

The five validator assignment policies we used in
the microbenchmark for validator mappings are listed
in Figure 10. “First Floor” defines the set composed of
all points of equipment that feed sub-locations on the first
floor of the building. “AH-4” defines the set of resources
consisting of all points of AH-4 and its sub-components.
“VAV-2” defines the set of all points VAV-2. “Third Floor”
is similar to “First Floor” but applies to the third floor.
“Default” is the fallback policy which simply contains all
points in this building. In the microbenchmark, we rank
their priority in the following order: “Third Floor”, “VAV-
27 “AH-4”, “First Floor”, and “Default”. When there are
fewer than five policies in the system in the experiment, we
keep the less prioritized ones. For instance, when the num-
ber of assignment policies in the system is 3 (¢.e., the third
datapoint for validator mappings in Figure 7), we have
them ordered as “AH-4”, “First Floor”, and “Default”.

	Introduction
	Background and Prior Work
	BMS and Building Control Logic
	Computing and Building Operating Systems
	Building Semantic Metadata

	System Design
	Brick Oracle
	Resource Proxy
	App Steward
	Registration
	Execution
	Termination

	Permission Manager
	User Permission
	App Permission

	Resource Regulator
	Resource Constraint Storage
	Pre-write Value Guard
	Live resource monitor

	Implementation
	Evaluation
	Setup
	Case Study #1 on Access Control
	Case Study #2 on Resource Isolation
	Comparison to Existing Approaches
	Microbenchmarks
	Real-world Deployment
	Limitations and Future Work

	Conclusion
	References
	Appendix
	Implementation of Resource Proxy
	Implementation of App Steward
	Registration
	Execution
	Termination

	Implementation of Permission Manager
	Resource Regulator
	Resource Constraint Storage
	Pre-actuation Value Validators
	Validator Assignments
	Regulating Policies

	Sample Policies Used

