
Improving gVisor Memory Subsystem Performance

Xiaohan Fu, Bili Dong, John Hwang
University of California, San Diego

Abstract
Among current virtualization technologies, containers are
often closely connected with high performance, low overhead,
as well as weak security isolation. gVisor is a technology
developed by Google which attempts to improve container
security through sandboxing. In this project, we analyzed the
performance of the gVisor memory management subsystem,
starting from benchmarking malloc and ending up focusing on
mmap. We further profiled mmap performance within gVisor
and identify its bottlenecks. We proposed an optimization
in free page searching algorithm of virtual memory space
within gVisor instead of the original plain linear search. This
optimization shortens the search time to O(logn) with a close
to constant performance in practice, in contrast to the original
O(n) linear scan which scales poorly with the number of
existing mappings. This patch has been submitted to the
official gVisor repository as a pull request and finally merged
to the master branch1.

1 Introduction

OS-level virtualization thrives in recent years with the popu-
larization of commercially successful containers like Docker,
but security has remained a major issue since the birth of this
technology [2]. gVisor, open sourced by Google in 2018 [4],
is designed to address this container security issue. Unfortu-
nately, there exists an unavoidable trade-off between security
and performance, and gVisor is no exception. Previous stud-
ies have revealed gVisor’s performance penalties in multiple
subsystems including memory management, network stack,
and others [5]. This work inspired us to attempt optimizations
in these subsystems.

Before diving into details, it helps to categorize the perfor-
mance overhead of gVisor as structural costs and implemen-
tation costs [3]. Structural costs are those imposed by high
level design choices, like the general virtualization architec-
ture and the adopted programming language. Implementation

1https://github.com/google/gvisor/commit/059879e

costs are those related to the actual implementations, like the
system calls in the libOS. Reducing structural costs requires
extensive understanding of the whole system, and an effort
far larger than we could afford. For our purposes, it’s only
realistic to focus on reducing implementation costs.

Therefore in this project, we aim to identify and improve
the performance of gVisor from the perspective of implemen-
tation costs without sacrificing its security. Specifically, we
focus on improving the memory subsystem performance by
optimizing the mmap syscall within gVisor, which is one of
the major bottlenecks in memory operations. Alternatively,
we also identified netstack related improvements for non-
datacenter use cases as a backup project. Fortunately, the
mmap project went well, and we never need to look further
into the netstack project.

The motivation for us to study and optimize the memory
subsystem of gVisor is straightforward. Memory management
is one of the most fundamental components of every operating
system. gVisor, as a libOS adding one more layer of indi-
rection for security, will definitely have management and im-
plementation overhead in this subsystem. As any container’s
workload will inevitably involve a large number of memory
operations from the its startup to the initiation of programs
within, even small improvement in performance of the mem-
ory management subsystem would have an obvious and posi-
tive impact on the whole system performance. Hence memory
management subsystem is a very cost-effective choice of entry
point to improve the overall efficiency of gVisor.

The rest of this paper is organized consistent with the work-
flow we conducted this project, as following. We describe
how we narrow down the optimization target from the whole
memory management subsystem to a single mmap syscall
specifically through various experiments and benchmarks in
Section 2. After that, significant code reading and literature
research is done to understand how mmap is implemented
within gVisor and how it diverges from regular linux, which
is explained in Section 3. Then we introduce the method
we used to identify the bottleneck within a mmap syscall in
Section 4. Finally, after figuring out the dominating source

1

https://github.com/google/gvisor/commit/059879e


of overhead, we got our hands dirty with the source code of
gVisor and optimized the free-space searching algorithm in
virtual memory space. The implementation of our optimiza-
tion is explained briefly in Section 5. For curious readers,
more details can be found by reading the commit itself. Eval-
uation of the cost and effect of this optimization is shown
in Section 6. The Challenges, unexpected behaviors, and
experiences we faced and obtained throughout this process
are shared in Section 7.

2 Problem Narrowing and Definition

Figure 1: Performance of malloc in the nofree case. This
figure is comparable to Figure 4 in [5], and shows similar
trends.

As gVisor is under active development, previous research
on gVisor performance [5] might be outdated already. So we
first reproduced and extended their malloc benchmark to see
if their results still hold. These benchmarks are performed on
a Google Cloud Platform (GCP) n1-standard-4 instance with
4 vCPUs and 15 GB memory, running a Ubuntu 18.04 OS.
(The same measurement is done on a bare metal as well for
comparison).

For each benchmark, we call malloc repetitively and mea-
sure the number of malloc operations per second. We ran
each benchmark with 4 different runtimes: native is the na-
tive Linux runtime, runc is the normal Docker runtime, runsc
is the gVisor runtime in ptrace mode, runsc-kvm is the gVisor
runtime in KVM mode. We performed 2 types of experiments
characterized by touch/notouch. In the context of this paper,
we refer to touch as accessing the memory immediately after
allocation. To stress the memory system, we do not free the
memory after allocation. This is the same setup as [5].

The results are presented in Figure 1. In general, we see
the same trends as in [5]. For the notouch case, the native
and runc results are fairly constant when the malloc size is

in between 4KB to 64KB, and then decrease from 128KB
and keep constant again, which can be explained by switch
from brk to mmap (proved by strace log). However, the
throughput inside gVisor is already much lower than runc or
native when in 4KB to 64KB region and comes incomparable
to runc or native when the allocation size is larger or equal to
128KB. This gives us the intuition that both brk and mmap in
sentry have degraded performance with the latter case being
extremely severe.

From these experiments we could see that there is a large
performance overhead in gVisor when mmap is involved for
memory allocation. So we decided to focus on mmap for
further investigation and optimization. We performed similar
benchmarks for mmap alone to further quantify its perfor-
mance. These benchmarks are presented in Section 6 as they
are also used as an evaluation method.

3 MMAP in Linux and gVisor

mmap, as described in its man page, "creates a new mapping
in the virtual space of the calling process" [1]. Classically,
there are 3 modes of mmap that in both linux and gVisor, as
shared, private, and anonymous. Subtle differences between
the linux and gVisor implementations cause the anonymous
configuration to have significantly different performance over-
head from the other configurations. The general workflow is
described as follows.

3.1 Linux
In linux, the mmap call creates a mapping called the Virtual
Memory Area (VMA) and typically points to some offset in
a real file on disk or a zero-filled ephemeral file (anonymous
mapping) as used by malloc.

Note that with the linux system call, the file mapped is
not immediately put into the physical memory, which means
the virtual to physical page mapping does not necessarily
exist after the mmap call. Instead, this mapping occurs upon
access to the allocated virtual address as a page fault, whose
handler maps physical memory to the file descriptor of the
VMA. Then, a page table entry which maps virtual addresses
to physical addresses is computed based on the above two
mappings.

To summarize, the mmap workflow can be expressed as
3 steps where steps 2 and 3 occur only after a page fault.
This behavior is remains consistent among the previously
mentioned configurations.

1. Create VMA: Maps virtual address to offset of file.

After triggered by a page fault

2. Create filemap: Maps file offset to physical address

3. Create PTE: Maps virtual address from 1. to physical
address from 2.

2



3.2 gVisor
In gVisor, the difference in mmap workflow is in the form of
two additional steps. First, the sentry intercepts mmap system
calls and takes on the responsibility of mapping the virtual
address to the file by creating a sentry VMA. Second, pgalloc
is used to map the sentry file and offset to a temporary host
memory file and offset. The workflow is summarized below.

1. Create sentry VMA: Maps virtual address to offset
of file in sentry (instead of host kernel). <= createV-
MALocked()

After triggered by a sentry page fault (VA accessed for 1st
time)

2. Create sentry filemap: pgalloc is used to map file and
offset in sentry to file and offset on host. <= getP-
MAsLocked()

3. Create host VMA: Maps virtual address from 1. to file
and offset on host from 2. by calling the host mmap
syscall. <= mapASLocked()

After triggered by a host page fault (VA acessed for 2nd time)

4. Create host filemap: Maps file and offset on host to
physical address.

5. Create PTE: Maps virtual address from 1. to physical
address from 4.

Although steps 1 and 2 are unique to gVisor, steps 3-5 maps
to steps 1-3 in a normal linux mmap call. Note step 1, 2 and 3
corresponds to createVMALocked(), getPMAsLocked() and
mapASLocked() in gVisor respectively.

One optimization made by gVisor is to eagerly create host
VMA for anonymous mmap, which means it will step through
the first three steps even when there’s no page fault at all.
This optimization saves the overhead of one time switching to
sentry to handle the page fault. Hence, anonymous mmap in
gVisor performs two more steps compared to shared/private
mmap when it’s called. This gives us the intuition that
an anonymous mmap should be slower than file-backed
mmap as it does more work.

4 Identifying the Bottleneck of MMAP

After understanding the implementation of MMAP in gVisor,
we tried to figure out the major source of overhead within it.
Usually, implementation cost is particularly obvious under
stress tests. Therefore we designed two groups of benchmarks
to put the system under pressure: one is to test the average
latency of a mmap call vs. total iterations, the other is to
test the average latency of a mmap call vs. the mmap size.
We refer to these benchmarks as Exp1 and Exp2 respectively.
Note as shared and private mmap show same pattern in all
benchmarks, we typically only shows the result for private
one.

4.1 Average Latency vs. Total Iterations

The idea behind Exp1 is to see if number of existing allocated
mappings has any effect on the average latency. If some im-
plementation in gVisor scales with the total mappings, there
must be some positive correlation. We fix the mmap size to
be 4KB, 16KB and 64KB respectively and span the iteration
from 100000 to 500000. These specific numbers allow suf-
ficiently large test sizes and iterations within the limitations
of our total memory. We perform the test on a Linux bare
metal with 64GB ram and 3GHz 8-core CPU. We do the test
for 12 trials with first 2 as warming up and 2 seconds internal
warmup time in each trial.

The test result for anonymous (private) case is shown in Fig-
ure 2. Both in gVisor (runsc-kvm) and in normal docker
(runc) the average latency is nearly constant, which im-
plies that there is no overhead that scales with increasing
iterations or existing mappings in anonymous case.

However, when we do the same benchmark for non-
anonymous file-backed mmap, i.e. private or shared mmap,
our test can’t even run to completion. This shows 100000 iter-
ations is far too large and we reduce our tests to 5000, 10000,
and 25000 iterations instead. The result is shown in Figure 3.
In contrast to the previous case, we see a clear pattern of the
average latency increasing linearly with total iterations. This
implies the cost of each file-backed mmap is linearly re-
lated to the number of existing mappings ahead of it and
the reason our test can’t scale to 100000 iterations is because
the total time would thus be quadratic to total iterations. Also,
it deserves to note that the latency is much larger than anony-
mous case, which contradicts our intuition in previous section
because of this linear performance.

This is an interesting behavior which is likely to be caused
by gVisor’s implementation. To identify the parts and func-
tions of gVisor that cause this pattern, we make use of perf,
the linux performance analysis tool to observe the cpu con-
sumption pattern by each function under different iterations’
test. The flame graph generated by the perf data is shown
in Figure 4 and Figure 5 for 10000 iterations and 25000 it-
erations respectively. It’s clearly noted that the utilization
of findAvailableLocked function increases from 40% of the
total createVMALocked() in 10000 iterations case to 82% in
25000 iterations case. This hints us findAvailableLocked may
be the source of overhead.

However, perf is based on CPU sampling which is not really
accurate and can only show percentage change of CPU utiliza-
tion. To have a more quantitative analysis, we add two pieces
of time tracers assembly code to read the TSC register from
CPU directly before and after the call of findAvailableLocked
inside MMap() in gVisor to record the time consumption.
This method gives minimal overhead and the most accurate
result at unit of cycle compared to normal clock_get_time()
syscall based time library functions. We obtain a chart of the
average latency of n-th mmap call in cycle vs. n in Figure 6.

3



Figure 2: Anonymous mmap latency vs. iterations.

Figure 3: Private mmap latency vs. iterations.

Figure 4: Flamegraph for createVMALocked with 10000
iterations.

Figure 5: Flamegraph for createVMALocked with 25000
iterations.

A clear and obvious linear relation is shown.
As the functionality of findAvailableLocked is to find

Figure 6: Time consumption of findAvailableLocked in cy-
cles vs. existing number of mappings ahead.

available large enough gap within the virtual memory
space, such pattern suggests a linear scan algorithm is
used there, which can be a practical optimization point.
Reading the code of this function shows this is correct. How-
ever, the problem is not ended. Careful readers may wonder
why this linear pattern only happens on shared/private mmap
but not on anonymous mmap? This question actually confuses

4



us for quite a long period and will be explained in Section 5.

4.2 Average Latency vs. Mapping Size

The idea behind Exp2 is to see if the size of mapping has any
effect on the average latency. By intuition, larger mappings
might cause more trouble. We fix the iteration to 25000 and
span the mapping size from 1KB, 2KB to 1MB. The number
25000 is specifically chosen for two reasons: to reach a good
balance at a large enough iteration which can still cover large
mmap size under the limitation of total memory and to have a
reasonable test time, especially because the non-anonymous
case in Exp1 does not scale well. We perform the test for
12 trials with 2 trials for warming up and 2 second internal
warmup in each trial on the same Linux bare metal used in
Exp1.

The test result for anonymous (private) case is shown in
Figure 7. In normal Docker (runc) the average latency is
constant no matter how large the mapping is. But in gVi-
sor (runsc-kvm), the average latency of the anonymous
case increases in relation to size after 64KB. In contrast,
the results for non-anonymous case maintains a constant
average latency, as shown in Figure 8.

We want to understand what’s happening in anonymous
case. Again, we use perf and generate flame graphs for MMap
size at 4KB and 512KB. In 4KB case, we can already see that
mapASLocked() which calls the host mmap syscall is taking
a dominating (97%) percentage of whole mmap call. In the
512KB case, it reaches 100%. This implies that the latency of
mapASLocked is likely increasing with mapping size. But if
you look the upper parts of the call stack shown in the flame
graph, most time is consumed by KVM operations which are
unrelated to gVisor functions.

Similarly, to have a more quantitative analysis, we measure
the average time consumption of createVMALocked, getP-
MAsLocked, and mapASLocked versus different mapping
sizes. The same warmup strategy above is still used and we
only take the mean of the real benchmark data. The result is
shown in Figure 9. Just as hinted by the flame graph, the ma-
pASLocked function, which is calling the host mmap syscall,
is the major cause of the increasing latency versus mmap size,
especially when larger than 64KB. After discussing with the
google developers during the community meeting, we kind
of agree that this is caused by KVM’s superpage involve-
ment after a specific value of total size mapped. This is
not something relevant to gVisor and can’t be optimized.

Summary Through these two experiments, we figure out a
valid optimization point: the virtual memory space free space
searching algorithm. More details about how we optimize it
is discussed in next section.

5 Optimization

To answer the question why anonymous mmap "does not
suffer" from the effects of the linear free space search algo-
rithm and to actually implement optimizations, we need to
understand how virtual space is structured within gVisor.

5.1 Virtual Memory Space in gVisor
The virtual memory space inside gVisor, is a set sorted by the
starting point of each allocated memory "segment". The set
is implemented as a B-tree, rather than the RB-tree used by
Linux. Each node of the tree contains from 2 to 5 segments
as keys (except the root node). While it’s very efficient to
add/remove segments into B-tree, the current implementation
uses a linear scan with a primitive NextGap() to iterate over
and find sufficiently large unallocated gaps for the new allo-
cation. Such search is of time complexity O(n) where n is the
total number of segments inside this set.

Insertion and removal of segments decides the total number
of segments. When a new mapping is inserted to this set, an
optimization is done to see if the previous or next allocated
segments have adjacent virtual addresses. If so, the mapping
contents are checked and if they are the same thing, these two
mapping will be merged. No modification to the tree structure
would be done if there’s a successful merged insertion.

Now we can answer the mystery question above. Anony-
mous mappings all have the same file identity "nil" and se-
quential anonymous in our benchmark would actually always
merge successfully. Thus the tree is actually only added one
new segment (key) only once throughout the process and the
search time is constant. However, for the non-anonymous
case, even though all the mappings are mapped to the ex-
act same file, since they are referencing the same region of
the file, they don’t actually have the same identity because
of increased reference count each time and can’t be merged.
Thus a new node is added to the tree each time there’s a new
mapping making the searching time increase linearly.

5.2 Solution
Our strategy to optimize the above mentioned search algo-
rithm is to add a new attribute - maxGap within each node
to record the longest gap under one node. Actually gaps are
defined as non-negative intervals in between segments. So
the gaps under one node can viewed as the gaps in between
all segments living in the tree rooted but this node, including
the heading and trailing one which are shared with this node’s
parent (if applicable). maxGap stores the maximum one in
this closure.

With the help of maxGap attribute, we are able to develop
two new member functions of gap: FindNextLargeEnough-
Gap and FindPrevLargeEnoughGap to replace the NextGap
and PrevGap primitives used for linear scan . These functions

5



Figure 7: Anonymous mmap latency vs. mmap size.

Figure 8: Private mmap latency vs. mmap size.

Figure 9: Average cost of subfunctions vs. mmap size.

will return the most adjacent large enough gap immediately
if there’s one. It only iterates and goes deep into one subtree
when the root node has a maxGap attribute larger than the
required minSize. The time complexity is reduced from O(n)
to O(logn) as we no longer need to iterate every node.

To avoid violating B-tree invariants (i.e. every leaf node is
on the same level and every node must have a certain range
of children) the tree structure undergoes rebalancing on in-

sertions and removals. The maintenance of maxGap during
insertion, removal and merge is tedious. This is especially true
during rebalancing before insertion and rebalancing before
removal; there are quite a few various corner cases to consider.
A large amount of effort is put there to ensure correctness, but
for limitation of pages, no details will be discussed here. If
you are interested, you may look into the code base directly.
The cost of maintenance of maxGap is still O(logn), which
is identical to the cost of insertion and removal. This means
we are only adding a small constant in front of the total time
complexity and should be negligible.

To summarize, the cost of this optimization is expected
to be very limited while the benefit should be significant.
If we reperform Exp1 and Exp2 in Section 4, we may see
the latency of anonymous case increased slightly because
of the cost of maintenance and we should see the latency
of shared/private case dramatically dropped and no longer
increasing with iterations in Exp1. Evaluation in practice
verifies this expectation and is discussed in Section 6.

6 Evaluation

To evaluate the performance of the optimization, we per-
formed exactly the same suite of benchmarks for mmap with
different runtimes, similar to what we did in Section 4 in the
notouch and nofree case. Again, runc is the normal Docker

6



runtime, runsc-kvm is the original gVisor runtime in KVM
mode, runsc-dev is the gVisor runtime after optimization also
in KVM mode. These experiments are performed in Xiao-
han’s personal computer with bare-metal Linux (the same one
as above).

In all cases shared mmap results are very similar to the
private mmap results, so we only keep private mmap results
in the main text and save shared mmap results in Appendix A.

6.1 MMAP Latency vs. Total Iterations

Figure 10: Anonymous mmap latency vs. iterations.

Figure 11: Private mmap latency vs. iterations.

We fix the mmap size to be 4KB, 16KB and 64KB respec-
tively and span the iteration from 100000 to 500000. To save
space, we only display the 4KB case here because they all
have very close pattern. The results are presented in Fig-
ure 10, 11 and 14 for anonymous, private and shared mmap
respectively.

In the anonymous case, there’s barely difference between
the average latency before and after the optimization, which
means introduction of maxGap does not add any notable main-
tenance cost.

Looking at the private or shared case, a significant im-
provement can be found.You may note that we are now doing
consistent iterations as anonymous case because the average
latency dramatically dropped. More importantly, the latency
is slightly smaller than anonymous case, which makes much

more sense compared to the previous case. And now the aver-
age latency is close to constant and is no longer increasing by
iterations.

6.2 MMAP Latency vs. Mapping Size

Figure 12: Anonymous mmap latency vs. mmap size.

Figure 13: Private mmap latency vs. mmap size.

The second set of experiments is again to see how mmap
latency scales with mmap size after the optimization. Itera-
tions are still fixed to be 25000 in these experiments. The
results are presented in Figure 12, 13 and 15 for anonymous,
private and shared case respectively.

Looking at the anonymous case, you could still see there’s
very limited difference between the average latency before
and after the optimization, which means our introduction of
maxGap does not add any significant maintenance cost.

Looking at the private or shared case, along with the ob-
vious improvement on latency, we should note that there’s
a slight increasing pattern with mapping size. This is rea-
sonable as when the required size gets larger, there would
be more recursion and jumps across the tree to find a large
enough one. The latency is still smaller than anonymous case.

7 Discussion & Experiences

In this section, we’d like to share the precious experiences we
obtained from the challenges we met and mistakes we made.

7



7.1 Challenges

One of the most challenging task in this project was to get
familiar with the toolchains of gVisor. The only related ma-
terials or resources available online are the github repository
and official website documentation while they are mostly de-
signed for users rather than developers. It took us a long time
to figure out how to use the profiling and debugging tools
embedded with gVisor. This turned out to not be very help-
ful and in the end we instead decided to use perf and code
injection to perform the benchmark.

It’s nevertheless not a easy task to configure perf correctly
with gVisor at all. Adin, one of the gVisor developers, said he
never succeeded in configuring the perf guest bits correctly.
I spent a large amount of time reading the documentation
and tutorial of perf and search related materials to finally
figure out a way to set it correctly and get things work. To
summarize here are three key points.

First, the gVisor container should be directly spawned by
runsc instead of forwarded to runsc by dockerd. This means
you should first understand OCI and then write a correct
configuration file for your container. I tried to write one but it
was not able to allow the container to create file descriptors
such that shared/private tests can’t be monitored. To resolve
that, I decided to "steal" the exact configuration file sent
by dockerd. However, since late 2019, docker no longer
explicitly stores the config file. It’s now stored in a mysterious
temporal location only when the container is running, which is
rarely discussed on the Internet and was hard to find. Second,
runsc must be run in KVM mode to produce a useful result as
ptrace mode is actually running as a separate process. Third,
perf events option must add correct flag to monitor cycles of
both host and guest os for KVM hyper-vised platform i.e. -e
cycles:HG.

Injecting assembly code into gVisor was also non-trivial.
Since the gVisor project is using bazel to manage build and
test processes, we had to figure out how to add our new pack-
age to the build chain of the bazel project. It took numerous
attempts and the help of Ian, another google engineer, to
finally able to compile gVisor with the timer.

Another notable obstacle was gVisor being written in
Golang, a programming language unfamiliar to us. It took sig-
nificant practice, reference to tutorials, and looking through
the source code before we were able to write and add opti-
mizations.

One another interesting finding during the mmap bench-
mark is the total number of memory mappings is limited by a
system parameter vm.max_map_count, which might be ex-
ceeded and cause your mmap to fail silently.

7.2 Mistakes

The most critical mistake we made, is the benchmarking
method we initially used. We didn’t apply any warmup tri-

als or iterations for the measurement, leading to results that
seemed somewhat random and non-deterministic. We wasted
a large amount of time understanding those weird patterns
and didn’t consider the possibility of our benchmark approach
itself being incorrect.

However, we later noted the warmup time option inside
the benchmark toolset lmbench, and tried running with some
warmup trials and iterations which resulted in much more
stable and reasonable results. Through tests and trials, we
figured out the best warmup scheme to be 2 warmup trials
and 2 seconds’ warmup time within each trial. This taught
us the important of building a stable testing environment and
was necessary to remove disturbance from things like caching
effects, scaling clock cycles, and so on. Generally, adding
warmup, increasing iterations and trials, pinning cpu core and
running alone in the system would be essential and helpful.

Another notable mistake we made happened during the
optimization. When designing the optimization algorithm,
we didn’t define the meaning of maxGap clearly enough. The
problem lied in whether the two ends of the gaps within a
node should be included. Despite this, I started coding which
resulted in a lot of bugs in the first version of code. After
going back and designing carefully, the code ran much better.
This teaches me again, that a thorough high level design of
the algorithm, like the choice of invariant, is more important
than the implementation itself.

8 Conclusion

The purpose of this project was to identify causes of perfor-
mance degradation in gVisor’s memory management as well
as propose approaches to mitigate their effects. We target the
mmap command specifically due to the significant slowdown
and poor scaling exhibited. After exploring the source code
of gVisor and running tons of testbenches, we dissect the im-
plementation of mmap and identify edge cases in its behavior
which we walk through in this paper. We find and attempt to
address scaling issues in certain edge cases of mmap.

We end by proposing and implementing an optimization to
improve mmap performance and scaling by avoiding linear
scanning in finding gaps to allocate memory by introducing
a new attribute, maxGap, to track gaps. This turns out to be
a valuable pull request which is finally merged to the master
branch.

Acknowledgments

We are particularly grateful for Yiying Zhang, the course
instructor, for giving us feedback and directions as the project
progresses. We thank Ethan from University of Wisconsin,
Madison for answering questions on paper [5] he authored.
We also thank the gVisor development team, especially Adin,
Jamie and Ian for their helpful suggestions and comments

8



along the way. Also special thank given to Yihao Liu for his
help on perf and bazel configuration.

Availability

The benchmark and evaluation code and data are publicly
available at https://github.com/291j-gvisor/gvisor-
mem-perf. The commit to the official gVisor repository
can be viewed at https://github.com/google/gvisor/
commit/059879e.

References

[1] Linux Programmer’s Manual - MMAP(2). http://man7.
org/linux/man-pages/man2/mmap.2.html, 2019-10-
10.

[2] Aaron Grattafiori. Understanding and hardening
linux containers. Technical report, NCC Group,
2016. https://www.nccgroup.trust/us/our-
research/understanding-and-hardening-linux-
containers/.

[3] Google gVisor Team. gVisor Documentation -
Performance Guide. https://gvisor.dev/docs/
architecture_guide/performance/, accessed Jan-
uary 2020.

[4] Nicolas Lacasse. Open-sourcing gVisor, a sandboxed
container runtime. https://cloud.google.com/
blog/products/gcp/open-sourcing-gvisor-a-
sandboxed-container-runtime, May 2018.

[5] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-

Dusseau. The true cost of containing: A gVisor case
study. In Proceedings of the 11th USENIX Confer-
ence on Hot Topics in Cloud Computing, HotCloud’19,
page 16, USA, 2019. USENIX Association. https:
//dl.acm.org/doi/10.5555/3357034.3357054.

A Shared MMAP Evaluation Results

Figure 14: Shared mmap latency vs. iterations.

Figure 15: Shared mmap latency vs. mmap size.

9

https://github.com/291j-gvisor/gvisor-mem-perf
https://github.com/291j-gvisor/gvisor-mem-perf
https://github.com/google/gvisor/commit/059879e
https://github.com/google/gvisor/commit/059879e
http://man7.org/linux/man-pages/man2/mmap.2.html
http://man7.org/linux/man-pages/man2/mmap.2.html
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
https://www.nccgroup.trust/us/our-research/understanding-and-hardening-linux-containers/
https://gvisor.dev/docs/architecture_guide/performance/
https://gvisor.dev/docs/architecture_guide/performance/
https://cloud.google.com/blog/products/gcp/open-sourcing-gvisor-a-sandboxed-container-runtime
https://cloud.google.com/blog/products/gcp/open-sourcing-gvisor-a-sandboxed-container-runtime
https://cloud.google.com/blog/products/gcp/open-sourcing-gvisor-a-sandboxed-container-runtime
https://dl.acm.org/doi/10.5555/3357034.3357054
https://dl.acm.org/doi/10.5555/3357034.3357054

	Introduction
	Problem Narrowing and Definition
	MMAP in Linux and gVisor
	Linux
	gVisor

	Identifying the Bottleneck of MMAP
	Average Latency vs. Total Iterations
	Average Latency vs. Mapping Size

	Optimization
	Virtual Memory Space in gVisor
	Solution

	Evaluation
	MMAP Latency vs. Total Iterations
	MMAP Latency vs. Mapping Size

	Discussion & Experiences
	Challenges
	Mistakes

	Conclusion
	Shared MMAP Evaluation Results

