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Abstract
This paper presents a toolset for assessing whether a cryp-
tographic function is constant-time on two given (distinct)
input sets. The toolset, based on dudect [17], extends new
support to languages other than C or C++, including Python
3, Golang, and JavaScript. We present a comprehensive test
suite covering common cryptographic primitives and provid-
ing finely-chosen inputs that can cause non-constant-time
behavior of certain implementations. We then evaluate our
approach by applying this test suite to a set of libraries with
our toolset and observing the violations that are detected.
Our preliminary results suggest that language runtime fea-
tures such as JIT may break the constant-time requirement.
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1 Introduction
Timing attacks on cryptosystems have long been researched
since 1996 [14]. Various attacks, such as [4], and defenses,
such as [12], over widely used cryptography algorithms have
been developed and applied to well-known libraries, such as
OpenSSL. Tools [1–3, 7, 8, 15, 17, 18] have been developed
for analyzing the time-constancy of a crypto-function imple-
mented in C or C++. The time-constancy of cryptographic
libraries implemented in other languages remains an un-
derstudied area. Consequently, applications and websites
based on these libraries may suffer from potential security
vulnerabilities.

In this paper, we aim to detect whether popular crypto-
graphic libraries in Golang, JavaScript and Python 3 have
constant-time implementations. Our contributions are:

1. A constant-time assessment tool for Golang, JavaScript
and Python 3 evolved from dudect[17].

2. A test suite against common cryptography primitives.
3. Presentation and discussion of the results of evaluating

the official Crypto library (and its extension) of Golang,
PyCrypto, Cryptography, and PyCryptodome of Python
3, and the official Crypto library of Node.js.

2 Tool Design
Our tool is evolved from dudect [17], designed to assess
whether a C function runs in constant time or not. Dudect
takes two inputs and runs the function many times for each
input to see if the running time for these two inputs shows
a statistically significant difference. A difference indicates

that there might be a timing exploit and the tested function
is very likely to be not constant-time. Note that a detected
leakage only shows that the measured running time may
not be constant. There is no guarantee that such a leakage
is sufficient to conclude the actual presence of a working
exploit or that the passed functions/libraries are definitely
constant-time.

We modified dudect to make it more statistically reliable,
test-extensible, and user-friendly, with changes including:

1. A provision for choosing whether to perform the cryp-
tography function’s state initialization every time for each
measurement, or once for the whole measurement. This is
now customizable by the user, while dudect only supports
one state initialization for the whole run. 2. An estimate of
the adequate sample size as a threshold for Welch’s test on
each sample, using the method described in [11]. It compares
the difference in size and variance between two populations
instead of an arbitrarily set threshold as used in dudect. 3. A
more user-friendly API to facilitate writing test suites.

2.1 Workflow
In general, our approach was to measure the execution time
of a cryptography function against two different classes of
inputs or states. Then we check statistically if these two
classes have different timing distributions.

Step 1: Class Definition. First, the user specifies the char-
acteristics of the two classes to be compared by defining two
functions: one for initialization and one for inputs generation.
The first function initializes the state for the target function
and returns a closure function which does the actual compu-
tation based on the state initialized. The tool only measures
the execution time of the returned closure function to avoid
disturbances from key generation and object instantiation.
The second function defines two classes of inputs (bound to
their class id) as arrays in advance. These inputs are to be
fed into the computing function.

Step 2: Measurement. The tool takes in the above two
functions, executes the computing function with the pre-
pared inputs one by one, and records the execution time. The
highest-resolution timer available on the platform is used
to measure the execution time. For Golang with GOOS=x86,
we are using the cycle counters in TSC registers. For Node.js,
we are using the native performance API. For Python 3, we
use the perf_counter function provided by the time library.
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Step 3: Data Pre-processing. Since timing distributions
might be positively skewed, it can be helpful to crop the
full data against certain percentile levels. We compute 100
levels of percentiles, from 50% to 99.9995%, and obtain 100
samples in addition to the original one. We also apply higher-
order pre-processing, namely centered product [6], to imitate
higher-order DPA attacks as claimed by dudect.

Step 4: Statistical Test. The last step is to apply a statis-
tical test on samples of large enough sizes to see if the mean
of the two populations within one sample are fundamen-
tally different. Welch’s test, which is used to test the null
hypothesis that two populations have equal means, is very
suitable here as the two populations are of unequal variance
and unequal sample size[19]. The test will output a t-value,
representing the confidence to reject the null hypothesis (of
equal means). As suggested by [10], a t-value larger than 4.5
can probably reject the Null hypothesis; a t-value larger than
100, gives very strong evidence to reject the Null hypothesis.

3 Test Vectors
We designed a general test suite which covers most com-
monly available cryptographic primitives to apply to our
target libraries. The general approach is to vary certain se-
cret inputs with the other inputs fixed to see if the varied
input affects the overall execution time. Specially crafted
inputs [9, 10] are also added to the test suite. For brevity, the
full test suite is listed in the appendix.

4 Results and Analysis
We apply our test suite over each primitive for three trials and
output the trial that yields the highest t-value. For brevity,
we list only the results of primitives having large t-values i.e.
>10 in Table 1; full results are listed in Appendix B, C, and D
for Golang, Javascript, and Python respectively.

Table 1. Results of Failing Primitives in Golang and JS.

Language Primitive Test t-value
Golang RSA OAEP 3 519

JavaScript RSA PKCS#1v1.5 2 166.93
JavaScript DSA 2 465.60

4.1 Golang
All the other tested primitives show no violation of time-
constancy except RSA OAEP in test-3 (constant vs. varying
random key pairs). To verify this, we added a special test: we
randomly generated 100 key pairs, and fixed class 0 and class
1 to use the keys in each respective pair to encrypt a ran-
domly generated fixed plaintext. Measurement of three trials
revealed that among the 100 randomly generated key pairs,
36%, 42%, and 46% of them showed definitive non-equal exe-
cution time. This gives further evidence that different keys

may lead to different execution times, which demonstrates
that the RSA OAEP implementation here is not constant-
time.
Looking into the source code of RSA OAEP encryption,

we find that the left-padding process is dependent on secret
inputs and conducted only when the computed ciphertext
is smaller than the size of the key. Another non-constant-
time point lies in the modular exponentiation algorithm
implemented in big.Int package which is used in the core
computations of RSA. The code deploys the square and mul-
tiply algorithm [13] which is known to be vulnerable under
timing attack with Montgomery reduction [16] or sliding
window conditionally. We note that the authors declare this
piece of code to be not constant-time in the comments.

4.2 JavaScript
As shown in Table 1, we observe that test-2 (constant key and
varying special messages) for RSA andDSA signature reports
non-constant-time behavior. This is interesting because this
package is just a wrapper of the OpenSSL implementations
in c which are shown to be likely to be constant-time by
dudect [5]. We observer a trend of decreasing t-values in
increasing rounds of measurement after looking deeper into
this. We suspect that this is very likely to be caused by the V8
JIT interpreter, which may break the constant-time property
of the underlying OpenSSL implementations.

4.3 Python3
Many of the tested primitives show t-value >10, including
Chacha20 and Salsa20 which are designed to be constant-
time. (We omit results of Python in Table 1 for brevity.) We
also observe that multiple trials of the same test on Python
output t-values with huge variance even after turning off
the garbage collection. As this is not found in Golang and
JavaScript, we strongly suspect that this is caused by certain
language runtime behavior of CPython.

5 Conclusions and Future Work
We create a tool, evolved from dudect, in Python3, Golang and
JavaScript to evaluate constant-time behavior of functions.
We show the effectiveness of this tool by catching some
violations with a specifically-designed test suite.

Future work will extend these preliminary investigations
by 1. expanding the test vectors with more implementation
specific inputs as discussed in [9, 10] 2. taking hardware opti-
mization into consideration in measurements 3. delving into
the impacts of runtime/JIT of Python and JS on constant-time
implementations.
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A Full Test Vectors
Note for each primitive, test-𝑖 will represent the test on set-0
vs. set-𝑖 i.e. set-0 is the baseline case in the comparison.

A.1 Symmetric Cipher
The test vectors designed for symmetric ciphers are listed in
Table 2. Typical examples of symmetric ciphers are chacha20,
salsa20, AES in various modes.

Table 2. Test suites for Symmetric Ciphers.

Set Note

0. constant key, plaintext/ciphertext,
nonce/iv

baseline case, all arguments randomly
prepicked

1. constant plaintext, nonce/iv (same as
set 0), varying random key

keys should be randomly picked in ad-
vance, must have large population

2. constant plaintext, nonce/iv (same as
set 0), const special key: 0, 1, 2, 3

can use smaller population for each
special key, but more trials is need to
test against different plaintexts

3. constant key, nonce/iv, varying plain-
text

4. constant key, nonce/iv, constant spe-
cial plaintext: 0, 1, and plaintext whose
ciphertext is 0, 1

5. constant key, plaintext, varying
nonce/iv

6. constant key, plaintext, constant spe-
cial nonce/iv: 0, 1

At the very beginning of each test trial, we draw all ar-
guments for the cipher randomly from the whole range e.g.
[0, 2128 − 1] for set-0 as the baseline case. In set-1, 3, and 5,
we reuse the other arguments the same as fixed set-0, and
draw a number of messages, nonces, and keys respectively
from the corresponding ranges uniformly. The number of
random numbers drawn here is chosen as a factor of the to-
tal measurement number e.g. 1/3 of the total. Note the total
number of measurements here must be large enough. The
rationale behind test-1, test-3, and test-5 are straightforward:
we want to see if random values vs. fixed value for each input
of symmetric cipher would reveal any obvious violations.
[10] points out that special ciphertext as small integers e.g. 0
and 1 may have impacts on the encryption of AES and RSA
which leads to our test-2. We reuse the other arguments,
and pick the plaintext to be those encrypted to 0/1 and 0/1
themselves. Test-6 (set-6) and test-4 follows a similar logic
here. As we have only a limited number of special inputs in
these tests, the total measurements can be relatively small.
There exists more specific test vectors designed particularly
for certain primitives available like discussed on AES in [9]
which could be added into test-2 and test-4.

A.2 Asymmetric Cipher
The test vectors designed for symmetric ciphers are listed
in Table 3. Typical examples here are RSA OAEP and RSA
PKCS#1v1.5. The test design rationale majorly comes from
[10].

http://cuda.dcc.ufmg.br/flowtracker/example.html
http://cuda.dcc.ufmg.br/flowtracker/example.html
https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://trust-in-soft.com/tis-ct/
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Table 3. Test suites for Asymmetric Ciphers.

Set Note

0. constant key, plaintext/ciphertext baseline parameter prepicked

1. constant key, various plaintext

2. constant key, speical plaintext: 0, 1,
and plaintexts whose ciphertext is 0, 1

3. constant plaintext, various key keys should be randomly picked in ad-
vance, must use large population

A.3 Signature
The test vectors designed for signatures are listed in Ta-
ble 4. Typical examples are RSA PKCS#1v1.5, RSA PSS, DSA
and ECDSA. The design logic for test-1 and test-2 is self-
contained.

Table 4. Test suites for Signatures.

Set Note

0. constant key, plaintext/ciphertext baseline parameter prepicked

1. constant key, various plaintext

2. constant plaintext, various key keys should be randomly picked in ad-
vance, must use large population (e.g.
1billion population, 10k keys)

A.4 Hash Function
The test vectors designed for hash functions are listed in Ta-
ble 5. Typical examples are SHA2 families and SHA3 families.
The design logic for test-1 is trivial.

Table 5. Test suites for Hash functions.

Set Note

0. constant data baseline, data randomly prepicked (at
various length level)

1. varying data

A.5 MAC
The test vectors designed for MAC are listed in Table 6.
Typical examples are HMAC and Poly1305. The design logic
for test-1 is straightforward.
Note for HMAC, the hash functions chosen should be

consistent with the tested hash functions such that the vary-
ing data part is already covered in tests for hash functions.
(Might need varying data test for Poly1305.)

B Full Results for Golang Crypto
The full test results for Golang are presented in Table 7, 8, 9,
10 respectively for symmetric ciphers, asymmetric ciphers,
signature and hash/mac functions.

Table 6. Test suites for HMAC functions.

Set Note

0. constant key

1. varying key keys should be randomly picked in ad-
vance, must use large population (e.g.
1billion population, 10k keys)

Table 7. Results for Symmetric Ciphers in Golang Crypto.

Test Salsa20 AES-CBC AES-CFB AES-OFB AES-CTR AES-GCM

1 3.56 1.46 1.50 2.48 1.48 1.85

2 0.63 1.77 1.67 2.87 1.63 2.02

3 1.63 1.36 2.00 1.01 1.40 1.68

4 2.67 2.29 2.08 1.97 2.55 2.40

5 2.68 2.46 3.23 1.80 3.22 1.89

6 4.03 3.23 2.77 1.80 3.96 1.92

Table 8. Results for Asymmetric Ciphers in Golang Crypto.

Test 1 2 3

RSA OAEP 1.83 2.18 519.59

Table 9. Results for Signature in Golang Crypto.

Test ECDSA-NISTP256 ECDSA-NISTP384

1 2.07 1.67

2 3.60 2.40

Table 10. Results for Hash Functions and MAC in Golang
Crypto.

Test SHA256 SHA3-256 HMAC-SHA256 HMAC-SHA3-256 Poly1305

1 1.91 2.06 N.A. N.A. N.A.

1 N.A. N.A. 2.26 1.75 2.28

C Full Results for JavaScript Crypto
The full test results for JavaScript are presented in Table 11,
12, 13, 14 respectively for symmetric ciphers, signature, hash
functions and mac functions.
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Table 11. Results for Symmetric Ciphers in JavaScript
Crypto.

Test AES-CBC AES-CFB AES-CTR AES-GCM AES-OFB Chacha20

1 2.36 3.18 2.23 2.93 2.64 2.82

2 2.07 3.21 2.48 2.07 2.33 2.75

3 2.42 2.54 2.25 1.60 1.92 2.42

4 3.21 4.20 3.60 4.80 3.72 2.14

5 3.60 3.57 2.20 2.68 5.54 3.57

6 3.51 3.38 3.51 3.36 3.53 4.19

Table 12. Results for Signatures in JavaScript Crypto.

Test RSA PKCS#1v1.5 DSA ECDSA

1 1.17 1.56 2.14

2 166.93 465.60 3.37

Table 13. Results for Hash Functions in JavaScript Crypto.

Test SHA256 SHA3-256

1 1.91 1.98

Table 14. Results for HMAC in JavaScript Crypto.

Test HMAC-SHA256 HMAC-SHA3-256

1 2.34 2.65

D Full Results for Python3 PyCrypto,
Cyptography, and PyCryptodome

The full test results for Python3 are presented in Table 15
for all three tested libraries.

Table 15. Results for Python3 PyCrypto, Cryptography, and
PyCryptodome.

Test 0 1 2 3 4 5 6

Cryptography-AES-CBC 10.0 18.4 10.8 6.2 10.5 10.2 15.8

PyCrypto-AES-CBC 6.0 13.9 7.5 2.1 3.8 21.4 53.2

PyCryptodome-AES-CBC 4.0 17.1 9.7 5.9 5.7 17.6 5.8

Cryptography-AES-CFB 10.3 29.1 10.6 8.5 9.6 25.9 10.8

PyCrypto-AES-CFB 4.2 10.8 4.4 7.6 3.1 19.8 16.2

PyCryptodome-AES-CFB 6.9 23.9 9.7 6.9 5.3 29.1 8.0

Cryptography-AES-OFB 5.5 39.2 6.1 7.8 8.1 48.4 17.6

PyCrypto-AES-OFB 6.9 27.1 36.4 5.2 7.5 25.0 8.1

PyCryptodome-AES-OFB 5.1 11.2 5.9 4.2 6.4 14.1 7.8

PyCryptodome-AES-CTR 6.8 12.1 6.5 8.4 7.9 11.4 6.2

PyCryptodome-AES-CCM 7.1 6.1 6.8 6.0 6.1 8.9 7.1

PyCryptodome-AES-EAX 3.0 6.5 15.1 1.9 2.9 11.1 2.9

Cryptography-AES-GCM 11.3 32.7 20.4 16.0 17.5 43.9 15.1

PyCryptodome-AES-GCM 3.2 4.3 7.7 7.7 9.2 11.2 8.5

PyCryptodome-AES-OCB 7.6 21.2 7.9 7.9 7.8 34.4 8.4

PyCryptodome-ChaCha20 14.3 20.7 23.7 16.9 19.6 22.1 18.4

Cryptography-ChaCha20 5.5 25.5 24.5 8.3 9.8 29.3 124.2

PyCryptodome-ChaCha20 13.8 23.4 16.4 14.8 17.7 20.4 19.6

PyCryptodome-Salsa20 12.4 24.6 8.7 2.3 9.7 25.1 19.4

Cryptography-RSA 2.0 1.9 1.9 56.5

PyCrypto-RSA 1.9 3.8 2.2 111.2

Cryptography-DSA 2.0 2.8 2.1 193.3

Cryptography-ECDSA 1.8 2.5 1.4 3.0

Cryptography-SHA256 7.7 6.9 7.0

PyCrypto-SHA256 3.1 3.7 3.3

PyCryptodome-SHA256 3.6 3.3 2.6

Cryptography-SHA3-256 3.6 3.7 4.4

PyCryptodome-SHA3-256 5.0 2.2 3.6

Cryptography-HMAC 5.8 18.9 14.6

PyCrypto-HMAC 5.5 12.7 9.5

PyCryptodome-HMAC 4.2 10.9 3.6

Cryptography-POLY1305 3.3 11.2 10.6

PyCryptodome-POLY1305 17.5 13.9 16.4
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